Optimal. Leaf size=31 \[ \frac {e^{6-2 x-\frac {2 \left (x+\log \left (\frac {x}{2}\right )\right )^2}{x^2}} \left (e^4+x\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 11.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) \left (-4 x^2-2 x^4+e^4 \left (-4 x-x^2-2 x^3\right )+\left (-4 x+4 x^2+e^4 (-4+4 x)\right ) \log \left (\frac {x}{2}\right )+\left (4 e^4+4 x\right ) \log ^2\left (\frac {x}{2}\right )\right )}{x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {\exp \left (\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) \left (-4 e^4-\left (4+e^4\right ) x-2 e^4 x^2-2 x^3\right )}{x^3}+\frac {4 \exp \left (\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) (-1+x) \left (e^4+x\right ) \log \left (\frac {x}{2}\right )}{x^4}+\frac {4 \exp \left (\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) \left (e^4+x\right ) \log ^2\left (\frac {x}{2}\right )}{x^4}\right ) \, dx\\ &=4 \int \frac {\exp \left (\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) (-1+x) \left (e^4+x\right ) \log \left (\frac {x}{2}\right )}{x^4} \, dx+4 \int \frac {\exp \left (\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) \left (e^4+x\right ) \log ^2\left (\frac {x}{2}\right )}{x^4} \, dx+\int \frac {\exp \left (\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) \left (-4 e^4-\left (4+e^4\right ) x-2 e^4 x^2-2 x^3\right )}{x^3} \, dx\\ &=4 \int \left (-\frac {\exp \left (4+\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) \log \left (\frac {x}{2}\right )}{x^4}+\frac {\exp \left (\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) \left (-1+e^4\right ) \log \left (\frac {x}{2}\right )}{x^3}+\frac {\exp \left (\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) \log \left (\frac {x}{2}\right )}{x^2}\right ) \, dx+4 \int \left (\frac {\exp \left (4+\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) \log ^2\left (\frac {x}{2}\right )}{x^4}+\frac {\exp \left (\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) \log ^2\left (\frac {x}{2}\right )}{x^3}\right ) \, dx+\int \left (-2 \exp \left (\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right )-\frac {4 \exp \left (4+\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right )}{x^3}+\frac {\exp \left (\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) \left (-4-e^4\right )}{x^2}-\frac {2 \exp \left (4+\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right )}{x}\right ) \, dx\\ &=-\left (2 \int \exp \left (\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) \, dx\right )-2 \int \frac {\exp \left (4+\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right )}{x} \, dx-4 \int \frac {\exp \left (4+\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right )}{x^3} \, dx-4 \int \frac {\exp \left (4+\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) \log \left (\frac {x}{2}\right )}{x^4} \, dx+4 \int \frac {\exp \left (\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) \log \left (\frac {x}{2}\right )}{x^2} \, dx+4 \int \frac {\exp \left (4+\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) \log ^2\left (\frac {x}{2}\right )}{x^4} \, dx+4 \int \frac {\exp \left (\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) \log ^2\left (\frac {x}{2}\right )}{x^3} \, dx+\left (-4-e^4\right ) \int \frac {\exp \left (\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right )}{x^2} \, dx-\left (4 \left (1-e^4\right )\right ) \int \frac {\exp \left (\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) \log \left (\frac {x}{2}\right )}{x^3} \, dx\\ &=-\left (2 \int \exp \left (\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) \, dx\right )-2 \int \frac {\exp \left (-\frac {2 \left (-4 x^2+x^3+2 x \log \left (\frac {x}{2}\right )+\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right )}{x} \, dx-4 \int \frac {\exp \left (-\frac {2 \left (-4 x^2+x^3+2 x \log \left (\frac {x}{2}\right )+\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right )}{x^3} \, dx-4 \int \frac {\exp \left (-\frac {2 \left (-4 x^2+x^3+2 x \log \left (\frac {x}{2}\right )+\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) \log \left (\frac {x}{2}\right )}{x^4} \, dx+4 \int \frac {\exp \left (\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) \log \left (\frac {x}{2}\right )}{x^2} \, dx+4 \int \frac {\exp \left (-\frac {2 \left (-4 x^2+x^3+2 x \log \left (\frac {x}{2}\right )+\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) \log ^2\left (\frac {x}{2}\right )}{x^4} \, dx+4 \int \frac {\exp \left (\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) \log ^2\left (\frac {x}{2}\right )}{x^3} \, dx+\left (-4-e^4\right ) \int \frac {\exp \left (\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right )}{x^2} \, dx-\left (4 \left (1-e^4\right )\right ) \int \frac {\exp \left (\frac {2 \left (2 x^2-x^3-2 x \log \left (\frac {x}{2}\right )-\log ^2\left (\frac {x}{2}\right )\right )}{x^2}\right ) \log \left (\frac {x}{2}\right )}{x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 41, normalized size = 1.32 \begin {gather*} 16^{\frac {1}{x}} e^{4-2 x-\frac {2 \log ^2\left (\frac {x}{2}\right )}{x^2}} x^{-\frac {4+x}{x}} \left (e^4+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 36, normalized size = 1.16 \begin {gather*} \frac {{\left (x + e^{4}\right )} e^{\left (-\frac {2 \, {\left (x^{3} - 2 \, x^{2} + 2 \, x \log \left (\frac {1}{2} \, x\right ) + \log \left (\frac {1}{2} \, x\right )^{2}\right )}}{x^{2}}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.58, size = 63, normalized size = 2.03 \begin {gather*} \frac {x e^{\left (-\frac {2 \, {\left (x^{3} - 2 \, x^{2} + 2 \, x \log \left (\frac {1}{2} \, x\right ) + \log \left (\frac {1}{2} \, x\right )^{2}\right )}}{x^{2}}\right )} + e^{\left (-\frac {2 \, {\left (x^{3} - 4 \, x^{2} + 2 \, x \log \left (\frac {1}{2} \, x\right ) + \log \left (\frac {1}{2} \, x\right )^{2}\right )}}{x^{2}}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 37, normalized size = 1.19
method | result | size |
risch | \(\frac {\left (x +{\mathrm e}^{4}\right ) {\mathrm e}^{-\frac {2 \left (x^{3}+\ln \left (\frac {x}{2}\right )^{2}+2 x \ln \left (\frac {x}{2}\right )-2 x^{2}\right )}{x^{2}}}}{x}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.56, size = 57, normalized size = 1.84 \begin {gather*} \frac {{\left (x e^{4} + e^{8}\right )} e^{\left (-2 \, x + \frac {4 \, \log \relax (2)}{x} - \frac {2 \, \log \relax (2)^{2}}{x^{2}} - \frac {4 \, \log \relax (x)}{x} + \frac {4 \, \log \relax (2) \log \relax (x)}{x^{2}} - \frac {2 \, \log \relax (x)^{2}}{x^{2}}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.64, size = 57, normalized size = 1.84 \begin {gather*} \frac {2^{4/x}\,x^{\frac {4\,\ln \relax (2)}{x^2}}\,{\mathrm {e}}^{4-\frac {2\,{\ln \relax (2)}^2}{x^2}-\frac {2\,{\ln \relax (x)}^2}{x^2}-2\,x}\,\left (x+{\mathrm {e}}^4\right )}{x^{4/x}\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.49, size = 37, normalized size = 1.19 \begin {gather*} \frac {\left (x + e^{4}\right ) e^{\frac {2 \left (- x^{3} + 2 x^{2} - 2 x \log {\left (\frac {x}{2} \right )} - \log {\left (\frac {x}{2} \right )}^{2}\right )}{x^{2}}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________