Optimal. Leaf size=21 \[ (4-x) x \log \left (\log (3)+\frac {2}{\log \left (\log \left (\frac {1}{\log (x)}\right )\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.57, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8-2 x+\left ((8-4 x) \log (x) \log \left (\frac {1}{\log (x)}\right ) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )+(4-2 x) \log (3) \log (x) \log \left (\frac {1}{\log (x)}\right ) \log ^2\left (\log \left (\frac {1}{\log (x)}\right )\right )\right ) \log \left (\frac {2+\log (3) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )}{\log \left (\log \left (\frac {1}{\log (x)}\right )\right )}\right )}{2 \log (x) \log \left (\frac {1}{\log (x)}\right ) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )+\log (3) \log (x) \log \left (\frac {1}{\log (x)}\right ) \log ^2\left (\log \left (\frac {1}{\log (x)}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8-2 x+\left ((8-4 x) \log (x) \log \left (\frac {1}{\log (x)}\right ) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )+(4-2 x) \log (3) \log (x) \log \left (\frac {1}{\log (x)}\right ) \log ^2\left (\log \left (\frac {1}{\log (x)}\right )\right )\right ) \log \left (\frac {2+\log (3) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )}{\log \left (\log \left (\frac {1}{\log (x)}\right )\right )}\right )}{\log (x) \log \left (\frac {1}{\log (x)}\right ) \log \left (\log \left (\frac {1}{\log (x)}\right )\right ) \left (2+\log (3) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )\right )} \, dx\\ &=\int \frac {2 \left (4-x-(-2+x) \log (x) \log \left (\frac {1}{\log (x)}\right ) \log \left (\log \left (\frac {1}{\log (x)}\right )\right ) \left (2+\log (3) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )\right ) \log \left (\log (3)+\frac {2}{\log \left (\log \left (\frac {1}{\log (x)}\right )\right )}\right )\right )}{\log (x) \log \left (\frac {1}{\log (x)}\right ) \log \left (\log \left (\frac {1}{\log (x)}\right )\right ) \left (2+\log (3) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )\right )} \, dx\\ &=2 \int \frac {4-x-(-2+x) \log (x) \log \left (\frac {1}{\log (x)}\right ) \log \left (\log \left (\frac {1}{\log (x)}\right )\right ) \left (2+\log (3) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )\right ) \log \left (\log (3)+\frac {2}{\log \left (\log \left (\frac {1}{\log (x)}\right )\right )}\right )}{\log (x) \log \left (\frac {1}{\log (x)}\right ) \log \left (\log \left (\frac {1}{\log (x)}\right )\right ) \left (2+\log (3) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )\right )} \, dx\\ &=2 \int \left (\frac {4-x}{\log (x) \log \left (\frac {1}{\log (x)}\right ) \log \left (\log \left (\frac {1}{\log (x)}\right )\right ) \left (2+\log (3) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )\right )}-(-2+x) \log \left (\log (3)+\frac {2}{\log \left (\log \left (\frac {1}{\log (x)}\right )\right )}\right )\right ) \, dx\\ &=2 \int \frac {4-x}{\log (x) \log \left (\frac {1}{\log (x)}\right ) \log \left (\log \left (\frac {1}{\log (x)}\right )\right ) \left (2+\log (3) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )\right )} \, dx-2 \int (-2+x) \log \left (\log (3)+\frac {2}{\log \left (\log \left (\frac {1}{\log (x)}\right )\right )}\right ) \, dx\\ &=2 \int \left (\frac {4-x}{2 \log (x) \log \left (\frac {1}{\log (x)}\right ) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )}+\frac {(-4+x) \log (3)}{2 \log (x) \log \left (\frac {1}{\log (x)}\right ) \left (2+\log (3) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )\right )}\right ) \, dx-2 \int \left (-2 \log \left (\log (3)+\frac {2}{\log \left (\log \left (\frac {1}{\log (x)}\right )\right )}\right )+x \log \left (\log (3)+\frac {2}{\log \left (\log \left (\frac {1}{\log (x)}\right )\right )}\right )\right ) \, dx\\ &=-\left (2 \int x \log \left (\log (3)+\frac {2}{\log \left (\log \left (\frac {1}{\log (x)}\right )\right )}\right ) \, dx\right )+4 \int \log \left (\log (3)+\frac {2}{\log \left (\log \left (\frac {1}{\log (x)}\right )\right )}\right ) \, dx+\log (3) \int \frac {-4+x}{\log (x) \log \left (\frac {1}{\log (x)}\right ) \left (2+\log (3) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )\right )} \, dx+\int \frac {4-x}{\log (x) \log \left (\frac {1}{\log (x)}\right ) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )} \, dx\\ &=-\left (2 \int x \log \left (\log (3)+\frac {2}{\log \left (\log \left (\frac {1}{\log (x)}\right )\right )}\right ) \, dx\right )+4 \int \log \left (\log (3)+\frac {2}{\log \left (\log \left (\frac {1}{\log (x)}\right )\right )}\right ) \, dx+\log (3) \int \left (-\frac {4}{\log (x) \log \left (\frac {1}{\log (x)}\right ) \left (2+\log (3) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )\right )}+\frac {x}{\log (x) \log \left (\frac {1}{\log (x)}\right ) \left (2+\log (3) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )\right )}\right ) \, dx+\int \left (\frac {4}{\log (x) \log \left (\frac {1}{\log (x)}\right ) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )}-\frac {x}{\log (x) \log \left (\frac {1}{\log (x)}\right ) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )}\right ) \, dx\\ &=-\left (2 \int x \log \left (\log (3)+\frac {2}{\log \left (\log \left (\frac {1}{\log (x)}\right )\right )}\right ) \, dx\right )+4 \int \frac {1}{\log (x) \log \left (\frac {1}{\log (x)}\right ) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )} \, dx+4 \int \log \left (\log (3)+\frac {2}{\log \left (\log \left (\frac {1}{\log (x)}\right )\right )}\right ) \, dx+\log (3) \int \frac {x}{\log (x) \log \left (\frac {1}{\log (x)}\right ) \left (2+\log (3) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )\right )} \, dx-(4 \log (3)) \int \frac {1}{\log (x) \log \left (\frac {1}{\log (x)}\right ) \left (2+\log (3) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )\right )} \, dx-\int \frac {x}{\log (x) \log \left (\frac {1}{\log (x)}\right ) \log \left (\log \left (\frac {1}{\log (x)}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.37, size = 20, normalized size = 0.95 \begin {gather*} -\left ((-4+x) x \log \left (\log (3)+\frac {2}{\log \left (\log \left (\frac {1}{\log (x)}\right )\right )}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.12, size = 30, normalized size = 1.43 \begin {gather*} -{\left (x^{2} - 4 \, x\right )} \log \left (\frac {\log \relax (3) \log \left (\log \left (\frac {1}{\log \relax (x)}\right )\right ) + 2}{\log \left (\log \left (\frac {1}{\log \relax (x)}\right )\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.94, size = 54, normalized size = 2.57 \begin {gather*} -x^{2} \log \left (\log \relax (3) \log \left (-\log \left (\log \relax (x)\right )\right ) + 2\right ) + x^{2} \log \left (\log \left (-\log \left (\log \relax (x)\right )\right )\right ) + 4 \, x \log \left (\log \relax (3) \log \left (-\log \left (\log \relax (x)\right )\right ) + 2\right ) - 4 \, x \log \left (\log \left (-\log \left (\log \relax (x)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.30, size = 397, normalized size = 18.90
method | result | size |
risch | \(\left (-x^{2}+4 x \right ) \ln \left (\ln \relax (3) \ln \left (-\ln \left (\ln \relax (x )\right )\right )+2\right )+x^{2} \ln \left (\ln \left (-\ln \left (\ln \relax (x )\right )\right )\right )-4 x \ln \left (\ln \left (-\ln \left (\ln \relax (x )\right )\right )\right )+\frac {i \pi \,x^{2} \mathrm {csgn}\left (i \left (\ln \relax (3) \ln \left (-\ln \left (\ln \relax (x )\right )\right )+2\right )\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (-\ln \left (\ln \relax (x )\right )\right )}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (3) \ln \left (-\ln \left (\ln \relax (x )\right )\right )+2\right )}{\ln \left (-\ln \left (\ln \relax (x )\right )\right )}\right )}{2}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (i \left (\ln \relax (3) \ln \left (-\ln \left (\ln \relax (x )\right )\right )+2\right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (3) \ln \left (-\ln \left (\ln \relax (x )\right )\right )+2\right )}{\ln \left (-\ln \left (\ln \relax (x )\right )\right )}\right )^{2}}{2}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (\frac {i}{\ln \left (-\ln \left (\ln \relax (x )\right )\right )}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (3) \ln \left (-\ln \left (\ln \relax (x )\right )\right )+2\right )}{\ln \left (-\ln \left (\ln \relax (x )\right )\right )}\right )^{2}}{2}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left (\ln \relax (3) \ln \left (-\ln \left (\ln \relax (x )\right )\right )+2\right )}{\ln \left (-\ln \left (\ln \relax (x )\right )\right )}\right )^{3}}{2}-2 i \pi x \,\mathrm {csgn}\left (i \left (\ln \relax (3) \ln \left (-\ln \left (\ln \relax (x )\right )\right )+2\right )\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (-\ln \left (\ln \relax (x )\right )\right )}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (3) \ln \left (-\ln \left (\ln \relax (x )\right )\right )+2\right )}{\ln \left (-\ln \left (\ln \relax (x )\right )\right )}\right )+2 i \pi x \,\mathrm {csgn}\left (i \left (\ln \relax (3) \ln \left (-\ln \left (\ln \relax (x )\right )\right )+2\right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (3) \ln \left (-\ln \left (\ln \relax (x )\right )\right )+2\right )}{\ln \left (-\ln \left (\ln \relax (x )\right )\right )}\right )^{2}+2 i \pi x \,\mathrm {csgn}\left (\frac {i}{\ln \left (-\ln \left (\ln \relax (x )\right )\right )}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (3) \ln \left (-\ln \left (\ln \relax (x )\right )\right )+2\right )}{\ln \left (-\ln \left (\ln \relax (x )\right )\right )}\right )^{2}-2 i \pi x \mathrm {csgn}\left (\frac {i \left (\ln \relax (3) \ln \left (-\ln \left (\ln \relax (x )\right )\right )+2\right )}{\ln \left (-\ln \left (\ln \relax (x )\right )\right )}\right )^{3}\) | \(397\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 37, normalized size = 1.76 \begin {gather*} -{\left (x^{2} - 4 \, x\right )} \log \left (\log \relax (3) \log \left (-\log \left (\log \relax (x)\right )\right ) + 2\right ) + {\left (x^{2} - 4 \, x\right )} \log \left (\log \left (-\log \left (\log \relax (x)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.28, size = 27, normalized size = 1.29 \begin {gather*} -x\,\ln \left (\frac {\ln \left (\ln \left (\frac {1}{\ln \relax (x)}\right )\right )\,\ln \relax (3)+2}{\ln \left (\ln \left (\frac {1}{\ln \relax (x)}\right )\right )}\right )\,\left (x-4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.45, size = 29, normalized size = 1.38 \begin {gather*} \left (- x^{2} + 4 x\right ) \log {\left (\frac {\log {\relax (3 )} \log {\left (\log {\left (\frac {1}{\log {\relax (x )}} \right )} \right )} + 2}{\log {\left (\log {\left (\frac {1}{\log {\relax (x )}} \right )} \right )}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________