Optimal. Leaf size=28 \[ \frac {5}{e^{10} \left (3+e^x\right )^2-x+x \left (x+(4+x)^2\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.46, antiderivative size = 34, normalized size of antiderivative = 1.21, number of steps used = 3, number of rules used = 3, integrand size = 150, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.020, Rules used = {6688, 12, 6686} \begin {gather*} \frac {5}{x \left (x^2+9 x+15\right )+e^{2 (x+5)}+6 e^{x+10}+9 e^{10}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 \left (-2 e^{2 (5+x)}-6 e^{10+x}-3 \left (5+6 x+x^2\right )\right )}{\left (9 e^{10}+e^{2 (5+x)}+6 e^{10+x}+x \left (15+9 x+x^2\right )\right )^2} \, dx\\ &=5 \int \frac {-2 e^{2 (5+x)}-6 e^{10+x}-3 \left (5+6 x+x^2\right )}{\left (9 e^{10}+e^{2 (5+x)}+6 e^{10+x}+x \left (15+9 x+x^2\right )\right )^2} \, dx\\ &=\frac {5}{9 e^{10}+e^{2 (5+x)}+6 e^{10+x}+x \left (15+9 x+x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 34, normalized size = 1.21 \begin {gather*} \frac {5}{9 e^{10}+e^{2 (5+x)}+6 e^{10+x}+x \left (15+9 x+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.38, size = 38, normalized size = 1.36 \begin {gather*} \frac {5 \, e^{10}}{{\left (x^{3} + 9 \, x^{2} + 15 \, x\right )} e^{10} + 9 \, e^{20} + e^{\left (2 \, x + 20\right )} + 6 \, e^{\left (x + 20\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 7.57, size = 32, normalized size = 1.14 \begin {gather*} \frac {10}{x^{3} + 9 \, x^{2} + 15 \, x + 9 \, e^{10} + e^{\left (2 \, x + 10\right )} + 6 \, e^{\left (x + 10\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 33, normalized size = 1.18
method | result | size |
risch | \(\frac {5}{{\mathrm e}^{2 x +10}+6 \,{\mathrm e}^{x +10}+x^{3}+9 \,{\mathrm e}^{10}+9 x^{2}+15 x}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 32, normalized size = 1.14 \begin {gather*} \frac {5}{x^{3} + 9 \, x^{2} + 15 \, x + 9 \, e^{10} + e^{\left (2 \, x + 10\right )} + 6 \, e^{\left (x + 10\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {90\,x+10\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{10}+30\,{\mathrm {e}}^{10}\,{\mathrm {e}}^x+15\,x^2+75}{81\,{\mathrm {e}}^{20}+12\,{\mathrm {e}}^{3\,x}\,{\mathrm {e}}^{20}+{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^{20}+{\mathrm {e}}^{2\,x}\,\left (54\,{\mathrm {e}}^{20}+{\mathrm {e}}^{10}\,\left (2\,x^3+18\,x^2+30\,x\right )\right )+{\mathrm {e}}^{10}\,\left (18\,x^3+162\,x^2+270\,x\right )+{\mathrm {e}}^x\,\left (108\,{\mathrm {e}}^{20}+{\mathrm {e}}^{10}\,\left (12\,x^3+108\,x^2+180\,x\right )\right )+225\,x^2+270\,x^3+111\,x^4+18\,x^5+x^6} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 34, normalized size = 1.21 \begin {gather*} \frac {5}{x^{3} + 9 x^{2} + 15 x + e^{10} e^{2 x} + 6 e^{10} e^{x} + 9 e^{10}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________