Optimal. Leaf size=16 \[ 5 e^{-7+x-\frac {16}{2+x^2}} \]
________________________________________________________________________________________
Rubi [F] time = 0.94, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-1-\frac {28-2 x+6 x^2-x^3}{2+x^2}} \left (20+160 x+20 x^2+5 x^4\right )}{4+4 x^2+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-1-\frac {28-2 x+6 x^2-x^3}{2+x^2}} \left (20+160 x+20 x^2+5 x^4\right )}{\left (2+x^2\right )^2} \, dx\\ &=\int \frac {e^{\frac {-30+2 x-7 x^2+x^3}{2+x^2}} \left (20+160 x+20 x^2+5 x^4\right )}{\left (2+x^2\right )^2} \, dx\\ &=\int \left (5 e^{\frac {-30+2 x-7 x^2+x^3}{2+x^2}}+\frac {160 e^{\frac {-30+2 x-7 x^2+x^3}{2+x^2}} x}{\left (2+x^2\right )^2}\right ) \, dx\\ &=5 \int e^{\frac {-30+2 x-7 x^2+x^3}{2+x^2}} \, dx+160 \int \frac {e^{\frac {-30+2 x-7 x^2+x^3}{2+x^2}} x}{\left (2+x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 16, normalized size = 1.00 \begin {gather*} 5 e^{-7+x-\frac {16}{2+x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 24, normalized size = 1.50 \begin {gather*} 5 \, e^{\left (\frac {x^{3} - 7 \, x^{2} + 2 \, x - 30}{x^{2} + 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 46, normalized size = 2.88 \begin {gather*} 5 \, e^{\left (\frac {x^{3}}{x^{2} + 2} - \frac {7 \, x^{2}}{x^{2} + 2} + \frac {2 \, x}{x^{2} + 2} - \frac {30}{x^{2} + 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 25, normalized size = 1.56
method | result | size |
risch | \(5 \,{\mathrm e}^{\frac {x^{3}-7 x^{2}+2 x -30}{x^{2}+2}}\) | \(25\) |
gosper | \(5 \,{\mathrm e}^{-1} {\mathrm e}^{\frac {x^{3}-6 x^{2}+2 x -28}{x^{2}+2}}\) | \(32\) |
norman | \(\frac {\left (10 \,{\mathrm e}^{-1}+5 x^{2} {\mathrm e}^{-1}\right ) {\mathrm e}^{-\frac {-x^{3}+6 x^{2}-2 x +28}{x^{2}+2}}}{x^{2}+2}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 15, normalized size = 0.94 \begin {gather*} 5 \, e^{\left (x - \frac {16}{x^{2} + 2} - 7\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.51, size = 24, normalized size = 1.50 \begin {gather*} 5\,{\mathrm {e}}^{\frac {x^3-7\,x^2+2\,x-30}{x^2+2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 24, normalized size = 1.50 \begin {gather*} \frac {5 e^{- \frac {- x^{3} + 6 x^{2} - 2 x + 28}{x^{2} + 2}}}{e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________