Optimal. Leaf size=24 \[ \log \left (9+\frac {e^{-2+\frac {2}{25 x^2}-x}+x}{\log (2)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.34, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {25 x^3+e^{\frac {2-50 x^2-25 x^3}{25 x^2}} \left (-4-25 x^3\right )}{25 e^{\frac {2-50 x^2-25 x^3}{25 x^2}} x^3+25 x^4+225 x^3 \log (2)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2+x} \left (25 x^3+e^{\frac {2-50 x^2-25 x^3}{25 x^2}} \left (-4-25 x^3\right )\right )}{25 x^3 \left (e^{\frac {2}{25 x^2}}+e^{2+x} x+e^{2+x} \log (512)\right )} \, dx\\ &=\frac {1}{25} \int \frac {e^{2+x} \left (25 x^3+e^{\frac {2-50 x^2-25 x^3}{25 x^2}} \left (-4-25 x^3\right )\right )}{x^3 \left (e^{\frac {2}{25 x^2}}+e^{2+x} x+e^{2+x} \log (512)\right )} \, dx\\ &=\frac {1}{25} \int \left (-\frac {4+25 x^3}{x^3}+\frac {e^{2+x} \left (4 x+25 x^4+4 \log (512)+25 x^3 (1+\log (512))\right )}{x^3 \left (e^{\frac {2}{25 x^2}}+e^{2+x} x+e^{2+x} \log (512)\right )}\right ) \, dx\\ &=-\left (\frac {1}{25} \int \frac {4+25 x^3}{x^3} \, dx\right )+\frac {1}{25} \int \frac {e^{2+x} \left (4 x+25 x^4+4 \log (512)+25 x^3 (1+\log (512))\right )}{x^3 \left (e^{\frac {2}{25 x^2}}+e^{2+x} x+e^{2+x} \log (512)\right )} \, dx\\ &=-\left (\frac {1}{25} \int \left (25+\frac {4}{x^3}\right ) \, dx\right )+\frac {1}{25} \int \left (\frac {4 e^{2+x}}{x^2 \left (e^{\frac {2}{25 x^2}}+e^{2+x} x+e^{2+x} \log (512)\right )}+\frac {25 e^{2+x} x}{e^{\frac {2}{25 x^2}}+e^{2+x} x+e^{2+x} \log (512)}+\frac {4 e^{2+x} \log (512)}{x^3 \left (e^{\frac {2}{25 x^2}}+e^{2+x} x+e^{2+x} \log (512)\right )}+\frac {25 e^{2+x} (1+\log (512))}{e^{\frac {2}{25 x^2}}+e^{2+x} x+e^{2+x} \log (512)}\right ) \, dx\\ &=\frac {2}{25 x^2}-x+\frac {4}{25} \int \frac {e^{2+x}}{x^2 \left (e^{\frac {2}{25 x^2}}+e^{2+x} x+e^{2+x} \log (512)\right )} \, dx+\frac {1}{25} (4 \log (512)) \int \frac {e^{2+x}}{x^3 \left (e^{\frac {2}{25 x^2}}+e^{2+x} x+e^{2+x} \log (512)\right )} \, dx+(1+\log (512)) \int \frac {e^{2+x}}{e^{\frac {2}{25 x^2}}+e^{2+x} x+e^{2+x} \log (512)} \, dx+\int \frac {e^{2+x} x}{e^{\frac {2}{25 x^2}}+e^{2+x} x+e^{2+x} \log (512)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.45, size = 36, normalized size = 1.50 \begin {gather*} \frac {1}{25} \left (-25 x+25 \log \left (e^{\frac {2}{25 x^2}}+e^{2+x} x+e^{2+x} \log (512)\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 25, normalized size = 1.04 \begin {gather*} \log \left (x + e^{\left (-\frac {25 \, x^{3} + 50 \, x^{2} - 2}{25 \, x^{2}}\right )} + 9 \, \log \relax (2)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 25, normalized size = 1.04 \begin {gather*} \log \left (x + e^{\left (-\frac {25 \, x^{3} + 50 \, x^{2} - 2}{25 \, x^{2}}\right )} + 9 \, \log \relax (2)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 26, normalized size = 1.08
method | result | size |
norman | \(\ln \left (9 \ln \relax (2)+x +{\mathrm e}^{\frac {-25 x^{3}-50 x^{2}+2}{25 x^{2}}}\right )\) | \(26\) |
risch | \(-x +\frac {2}{25 x^{2}}-\frac {-25 x^{3}-50 x^{2}+2}{25 x^{2}}+\ln \left (9 \ln \relax (2)+{\mathrm e}^{-\frac {25 x^{3}+50 x^{2}-2}{25 x^{2}}}+x \right )\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 26, normalized size = 1.08 \begin {gather*} -x + \log \left ({\left (x e^{2} + 9 \, e^{2} \log \relax (2)\right )} e^{x} + e^{\left (\frac {2}{25 \, x^{2}}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.45, size = 16, normalized size = 0.67 \begin {gather*} \ln \left (x+\ln \left (512\right )+{\mathrm {e}}^{\frac {2}{25\,x^2}-x-2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 24, normalized size = 1.00 \begin {gather*} \log {\left (x + e^{\frac {- x^{3} - 2 x^{2} + \frac {2}{25}}{x^{2}}} + 9 \log {\relax (2 )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________