Optimal. Leaf size=20 \[ \frac {\left (2-e^{e^8} (-1+x)^2\right )^2}{x} \]
________________________________________________________________________________________
Rubi [B] time = 0.04, antiderivative size = 56, normalized size of antiderivative = 2.80, number of steps used = 2, number of rules used = 1, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.023, Rules used = {14} \begin {gather*} e^{2 e^8} x^3-4 e^{2 e^8} x^2-2 e^{e^8} \left (2-3 e^{e^8}\right ) x+\frac {\left (2-e^{e^8}\right )^2}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2 e^{e^8} \left (-2+3 e^{e^8}\right )-\frac {\left (-2+e^{e^8}\right )^2}{x^2}-8 e^{2 e^8} x+3 e^{2 e^8} x^2\right ) \, dx\\ &=\frac {\left (2-e^{e^8}\right )^2}{x}-2 e^{e^8} \left (2-3 e^{e^8}\right ) x-4 e^{2 e^8} x^2+e^{2 e^8} x^3\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.03, size = 41, normalized size = 2.05 \begin {gather*} \frac {4-4 e^{e^8} \left (1+x^2\right )+e^{2 e^8} \left (1+6 x^2-4 x^3+x^4\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.73, size = 37, normalized size = 1.85 \begin {gather*} \frac {{\left (x^{4} - 4 \, x^{3} + 6 \, x^{2} + 1\right )} e^{\left (2 \, e^{8}\right )} - 4 \, {\left (x^{2} + 1\right )} e^{\left (e^{8}\right )} + 4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 50, normalized size = 2.50 \begin {gather*} x^{3} e^{\left (2 \, e^{8}\right )} - 4 \, x^{2} e^{\left (2 \, e^{8}\right )} + 6 \, x e^{\left (2 \, e^{8}\right )} - 4 \, x e^{\left (e^{8}\right )} + \frac {e^{\left (2 \, e^{8}\right )} - 4 \, e^{\left (e^{8}\right )} + 4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 54, normalized size = 2.70
method | result | size |
default | \({\mathrm e}^{2 \,{\mathrm e}^{8}} x^{3}-4 \,{\mathrm e}^{2 \,{\mathrm e}^{8}} x^{2}+6 \,{\mathrm e}^{2 \,{\mathrm e}^{8}} x -4 \,{\mathrm e}^{{\mathrm e}^{8}} x -\frac {-{\mathrm e}^{2 \,{\mathrm e}^{8}}+4 \,{\mathrm e}^{{\mathrm e}^{8}}-4}{x}\) | \(54\) |
risch | \({\mathrm e}^{2 \,{\mathrm e}^{8}} x^{3}-4 \,{\mathrm e}^{2 \,{\mathrm e}^{8}} x^{2}+6 \,{\mathrm e}^{2 \,{\mathrm e}^{8}} x -4 \,{\mathrm e}^{{\mathrm e}^{8}} x +\frac {{\mathrm e}^{2 \,{\mathrm e}^{8}}}{x}-\frac {4 \,{\mathrm e}^{{\mathrm e}^{8}}}{x}+\frac {4}{x}\) | \(57\) |
norman | \(\frac {{\mathrm e}^{2 \,{\mathrm e}^{8}} x^{4}-4 \,{\mathrm e}^{2 \,{\mathrm e}^{8}} x^{3}+\left (6 \,{\mathrm e}^{2 \,{\mathrm e}^{8}}-4 \,{\mathrm e}^{{\mathrm e}^{8}}\right ) x^{2}+4+{\mathrm e}^{2 \,{\mathrm e}^{8}}-4 \,{\mathrm e}^{{\mathrm e}^{8}}}{x}\) | \(65\) |
gosper | \(\frac {{\mathrm e}^{2 \,{\mathrm e}^{8}} x^{4}-4 \,{\mathrm e}^{2 \,{\mathrm e}^{8}} x^{3}+6 \,{\mathrm e}^{2 \,{\mathrm e}^{8}} x^{2}-4 \,{\mathrm e}^{{\mathrm e}^{8}} x^{2}+{\mathrm e}^{2 \,{\mathrm e}^{8}}-4 \,{\mathrm e}^{{\mathrm e}^{8}}+4}{x}\) | \(66\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 52, normalized size = 2.60 \begin {gather*} x^{3} e^{\left (2 \, e^{8}\right )} - 4 \, x^{2} e^{\left (2 \, e^{8}\right )} + 2 \, x {\left (3 \, e^{\left (2 \, e^{8}\right )} - 2 \, e^{\left (e^{8}\right )}\right )} + \frac {e^{\left (2 \, e^{8}\right )} - 4 \, e^{\left (e^{8}\right )} + 4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.34, size = 49, normalized size = 2.45 \begin {gather*} x^3\,{\mathrm {e}}^{2\,{\mathrm {e}}^8}-4\,x^2\,{\mathrm {e}}^{2\,{\mathrm {e}}^8}+\frac {{\mathrm {e}}^{2\,{\mathrm {e}}^8}-4\,{\mathrm {e}}^{{\mathrm {e}}^8}+4}{x}+2\,x\,{\mathrm {e}}^{{\mathrm {e}}^8}\,\left (3\,{\mathrm {e}}^{{\mathrm {e}}^8}-2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.17, size = 54, normalized size = 2.70 \begin {gather*} x^{3} e^{2 e^{8}} - 4 x^{2} e^{2 e^{8}} + x \left (- 4 e^{e^{8}} + 6 e^{2 e^{8}}\right ) + \frac {4 - 4 e^{e^{8}} + e^{2 e^{8}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________