Optimal. Leaf size=26 \[ \frac {1}{2 \left (x+\frac {x}{1+x^4 \log (5)}\right )}+\log \left (\log ^2(x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.43, antiderivative size = 32, normalized size of antiderivative = 1.23, number of steps used = 11, number of rules used = 10, integrand size = 69, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.145, Rules used = {1594, 28, 6688, 12, 14, 1484, 21, 30, 2302, 29} \begin {gather*} \frac {x^3 \log (5)}{4 \left (x^4 \log (5)+2\right )}+\frac {1}{4 x}+2 \log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 21
Rule 28
Rule 29
Rule 30
Rule 1484
Rule 1594
Rule 2302
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {16 x+16 x^5 \log (5)+4 x^9 \log ^2(5)+\left (-2+x^4 \log (5)-x^8 \log ^2(5)\right ) \log (x)}{x^2 \left (8+8 x^4 \log (5)+2 x^8 \log ^2(5)\right ) \log (x)} \, dx\\ &=\left (2 \log ^2(5)\right ) \int \frac {16 x+16 x^5 \log (5)+4 x^9 \log ^2(5)+\left (-2+x^4 \log (5)-x^8 \log ^2(5)\right ) \log (x)}{x^2 \left (4 \log (5)+2 x^4 \log ^2(5)\right )^2 \log (x)} \, dx\\ &=\left (2 \log ^2(5)\right ) \int \frac {\frac {-2+x^4 \log (5)-x^8 \log ^2(5)}{\left (2+x^4 \log (5)\right )^2}+\frac {4 x}{\log (x)}}{4 x^2 \log ^2(5)} \, dx\\ &=\frac {1}{2} \int \frac {\frac {-2+x^4 \log (5)-x^8 \log ^2(5)}{\left (2+x^4 \log (5)\right )^2}+\frac {4 x}{\log (x)}}{x^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {-2+x^4 \log (5)-x^8 \log ^2(5)}{x^2 \left (2+x^4 \log (5)\right )^2}+\frac {4}{x \log (x)}\right ) \, dx\\ &=\frac {1}{2} \int \frac {-2+x^4 \log (5)-x^8 \log ^2(5)}{x^2 \left (2+x^4 \log (5)\right )^2} \, dx+2 \int \frac {1}{x \log (x)} \, dx\\ &=\frac {x^3 \log (5)}{4 \left (2+x^4 \log (5)\right )}+2 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )-\frac {\int \frac {16 \log ^2(5)+8 x^4 \log ^3(5)}{x^2 \left (2+x^4 \log (5)\right )} \, dx}{32 \log ^2(5)}\\ &=\frac {x^3 \log (5)}{4 \left (2+x^4 \log (5)\right )}+2 \log (\log (x))-\frac {1}{4} \int \frac {1}{x^2} \, dx\\ &=\frac {1}{4 x}+\frac {x^3 \log (5)}{4 \left (2+x^4 \log (5)\right )}+2 \log (\log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 29, normalized size = 1.12 \begin {gather*} \frac {1}{4} \left (\frac {1}{x}+\frac {x^3 \log (5)}{2+x^4 \log (5)}+8 \log (\log (x))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.31, size = 37, normalized size = 1.42 \begin {gather*} \frac {x^{4} \log \relax (5) + 4 \, {\left (x^{5} \log \relax (5) + 2 \, x\right )} \log \left (\log \relax (x)\right ) + 1}{2 \, {\left (x^{5} \log \relax (5) + 2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 28, normalized size = 1.08 \begin {gather*} \frac {x^{3} \log \relax (5)}{4 \, {\left (x^{4} \log \relax (5) + 2\right )}} + \frac {1}{4 \, x} + 2 \, \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 29, normalized size = 1.12
method | result | size |
default | \(2 \ln \left (\ln \relax (x )\right )+\frac {1}{4 x}+\frac {x^{3} \ln \relax (5)}{4 x^{4} \ln \relax (5)+8}\) | \(29\) |
norman | \(\frac {\frac {1}{2}+\frac {x^{4} \ln \relax (5)}{2}}{x \left (x^{4} \ln \relax (5)+2\right )}+2 \ln \left (\ln \relax (x )\right )\) | \(30\) |
risch | \(\frac {x^{4} \ln \relax (5)+1}{2 \left (x^{4} \ln \relax (5)+2\right ) x}+2 \ln \left (\ln \relax (x )\right )\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 28, normalized size = 1.08 \begin {gather*} \frac {x^{4} \log \relax (5) + 1}{2 \, {\left (x^{5} \log \relax (5) + 2 \, x\right )}} + 2 \, \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.83, size = 28, normalized size = 1.08 \begin {gather*} 2\,\ln \left (\ln \relax (x)\right )+\frac {\ln \relax (5)\,x^4+1}{2\,\ln \relax (5)\,x^5+4\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 27, normalized size = 1.04 \begin {gather*} - \frac {- x^{4} \log {\relax (5 )} - 1}{2 x^{5} \log {\relax (5 )} + 4 x} + 2 \log {\left (\log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________