Optimal. Leaf size=21 \[ \log \left (\left (-\frac {13}{2}+x+\log \left (3 \left (6-e^x+x^2\right )\right )\right )^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.31, antiderivative size = 23, normalized size of antiderivative = 1.10, number of steps used = 3, number of rules used = 3, integrand size = 68, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.044, Rules used = {6741, 12, 6684} \begin {gather*} 2 \log \left (-2 \log \left (3 \left (x^2-e^x+6\right )\right )-2 x+13\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6684
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \left (-6+2 e^x-2 x-x^2\right )}{\left (6-e^x+x^2\right ) \left (13-2 x-2 \log \left (3 \left (6-e^x+x^2\right )\right )\right )} \, dx\\ &=4 \int \frac {-6+2 e^x-2 x-x^2}{\left (6-e^x+x^2\right ) \left (13-2 x-2 \log \left (3 \left (6-e^x+x^2\right )\right )\right )} \, dx\\ &=2 \log \left (13-2 x-2 \log \left (3 \left (6-e^x+x^2\right )\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.37, size = 25, normalized size = 1.19 \begin {gather*} 2 \log \left (13-2 x-\log (9)-2 \log \left (6-e^x+x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 22, normalized size = 1.05 \begin {gather*} 2 \, \log \left (2 \, x + 2 \, \log \left (3 \, x^{2} - 3 \, e^{x} + 18\right ) - 13\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 22, normalized size = 1.05 \begin {gather*} 2 \, \log \left (2 \, x + 2 \, \log \left (3 \, x^{2} - 3 \, e^{x} + 18\right ) - 13\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 19, normalized size = 0.90
method | result | size |
risch | \(2 \ln \left (x -\frac {13}{2}+\ln \left (-3 \,{\mathrm e}^{x}+3 x^{2}+18\right )\right )\) | \(19\) |
norman | \(2 \ln \left (2 \ln \left (-3 \,{\mathrm e}^{x}+3 x^{2}+18\right )+2 x -13\right )\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.49, size = 21, normalized size = 1.00 \begin {gather*} 2 \, \log \left (i \, \pi + x + \log \relax (3) + \log \left (-x^{2} + e^{x} - 6\right ) - \frac {13}{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.54, size = 18, normalized size = 0.86 \begin {gather*} 2\,\ln \left (x+\ln \left (3\,x^2-3\,{\mathrm {e}}^x+18\right )-\frac {13}{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 20, normalized size = 0.95 \begin {gather*} 2 \log {\left (x + \log {\left (3 x^{2} - 3 e^{x} + 18 \right )} - \frac {13}{2} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________