Optimal. Leaf size=22 \[ \log \left (2 e^x+e^{-\frac {1}{\log (64)}}-x-\log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.85, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 e^{x+\frac {1}{\log (64)}} x+e^{\frac {1}{\log (64)}} (1+x)}{-x-2 e^{x+\frac {1}{\log (64)}} x+e^{\frac {1}{\log (64)}} x^2+e^{\frac {1}{\log (64)}} x \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {1}{\log (64)}} \left (-1-x+2 e^x x\right )}{x+2 e^{x+\frac {1}{\log (64)}} x-e^{\frac {1}{\log (64)}} x^2-e^{\frac {1}{\log (64)}} x \log (x)} \, dx\\ &=e^{\frac {1}{\log (64)}} \int \frac {-1-x+2 e^x x}{x+2 e^{x+\frac {1}{\log (64)}} x-e^{\frac {1}{\log (64)}} x^2-e^{\frac {1}{\log (64)}} x \log (x)} \, dx\\ &=e^{\frac {1}{\log (64)}} \int \left (-\frac {1}{1+2 e^{x+\frac {1}{\log (64)}}-e^{\frac {1}{\log (64)}} x-e^{\frac {1}{\log (64)}} \log (x)}+\frac {2 e^x}{1+2 e^{x+\frac {1}{\log (64)}}-e^{\frac {1}{\log (64)}} x-e^{\frac {1}{\log (64)}} \log (x)}+\frac {1}{x \left (-1-2 e^{x+\frac {1}{\log (64)}}+e^{\frac {1}{\log (64)}} x+e^{\frac {1}{\log (64)}} \log (x)\right )}\right ) \, dx\\ &=-\left (e^{\frac {1}{\log (64)}} \int \frac {1}{1+2 e^{x+\frac {1}{\log (64)}}-e^{\frac {1}{\log (64)}} x-e^{\frac {1}{\log (64)}} \log (x)} \, dx\right )+e^{\frac {1}{\log (64)}} \int \frac {1}{x \left (-1-2 e^{x+\frac {1}{\log (64)}}+e^{\frac {1}{\log (64)}} x+e^{\frac {1}{\log (64)}} \log (x)\right )} \, dx+\left (2 e^{\frac {1}{\log (64)}}\right ) \int \frac {e^x}{1+2 e^{x+\frac {1}{\log (64)}}-e^{\frac {1}{\log (64)}} x-e^{\frac {1}{\log (64)}} \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.45, size = 32, normalized size = 1.45 \begin {gather*} \log \left (1+2 e^{x+\frac {1}{\log (64)}}-e^{\frac {1}{\log (64)}} x-e^{\frac {1}{\log (64)}} \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 38, normalized size = 1.73 \begin {gather*} \log \left (x e^{\left (\frac {1}{6 \, \log \relax (2)}\right )} + e^{\left (\frac {1}{6 \, \log \relax (2)}\right )} \log \relax (x) - 2 \, e^{\left (\frac {6 \, x \log \relax (2) + 1}{6 \, \log \relax (2)}\right )} - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 35, normalized size = 1.59 \begin {gather*} \log \left (-x e^{\left (\frac {1}{6 \, \log \relax (2)}\right )} - e^{\left (\frac {1}{6 \, \log \relax (2)}\right )} \log \relax (x) + 2 \, e^{\left (x + \frac {1}{6 \, \log \relax (2)}\right )} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 34, normalized size = 1.55
method | result | size |
norman | \(\ln \left ({\mathrm e}^{\frac {1}{6 \ln \relax (2)}} \ln \relax (x )-2 \,{\mathrm e}^{\frac {1}{6 \ln \relax (2)}} {\mathrm e}^{x}+x \,{\mathrm e}^{\frac {1}{6 \ln \relax (2)}}-1\right )\) | \(34\) |
risch | \(\ln \left (\ln \relax (x )-\left ({\mathrm e}^{\frac {5}{6 \ln \relax (2)}}-{\mathrm e}^{\frac {1}{\ln \relax (2)}} x +2 \,{\mathrm e}^{\frac {x \ln \relax (2)+1}{\ln \relax (2)}}\right ) {\mathrm e}^{-\frac {1}{\ln \relax (2)}}\right )\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 42, normalized size = 1.91 \begin {gather*} \log \left (-\frac {1}{2} \, {\left (x e^{\left (\frac {1}{6 \, \log \relax (2)}\right )} + e^{\left (\frac {1}{6 \, \log \relax (2)}\right )} \log \relax (x) - 2 \, e^{\left (x + \frac {1}{6 \, \log \relax (2)}\right )} - 1\right )} e^{\left (-\frac {1}{6 \, \log \relax (2)}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.59, size = 18, normalized size = 0.82 \begin {gather*} \ln \left (x-{\mathrm {e}}^{-\frac {1}{6\,\ln \relax (2)}}-2\,{\mathrm {e}}^x+\ln \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 37, normalized size = 1.68 \begin {gather*} \log {\left (\frac {- x e^{\frac {1}{6 \log {\relax (2 )}}} - e^{\frac {1}{6 \log {\relax (2 )}}} \log {\relax (x )} + 1}{2 e^{\frac {1}{6 \log {\relax (2 )}}}} + e^{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________