Optimal. Leaf size=29 \[ \frac {-4+\log \left (e^2+\left (1+\frac {x}{3}\right )^2\right )}{\log \left (2+x+\log \left ((-4+x)^2\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 5.64, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-72-12 x+16 x^2+4 x^3+e^2 (-72+36 x)+\left (18+e^2 (18-9 x)+3 x-4 x^2-x^3\right ) \log \left (\frac {1}{9} \left (9+9 e^2+6 x+x^2\right )\right )+\left (-48-28 x+2 x^2+2 x^3+\left (-24-2 x+2 x^2\right ) \log \left (16-8 x+x^2\right )\right ) \log \left (2+x+\log \left (16-8 x+x^2\right )\right )}{\left (-72-66 x-11 x^2+4 x^3+x^4+e^2 \left (-72-18 x+9 x^2\right )+\left (-36-15 x+2 x^2+x^3+e^2 (-36+9 x)\right ) \log \left (16-8 x+x^2\right )\right ) \log ^2\left (2+x+\log \left (16-8 x+x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4 (-2+x) \left (9 e^2+(3+x)^2\right )+(-2+x) \left (9 e^2+(3+x)^2\right ) \log \left (e^2+\frac {1}{9} (3+x)^2\right )-2 \left (-12-x+x^2\right ) \left (2+x+\log \left ((-4+x)^2\right )\right ) \log \left (2+x+\log \left ((-4+x)^2\right )\right )}{(4-x) \left (9 \left (1+e^2\right )+6 x+x^2\right ) \left (2+x+\log \left ((-4+x)^2\right )\right ) \log ^2\left (2+x+\log \left ((-4+x)^2\right )\right )} \, dx\\ &=\int \left (-\frac {(-2+x) \left (-4+\log \left (e^2+\frac {1}{9} (3+x)^2\right )\right )}{(-4+x) \left (2+x+\log \left ((-4+x)^2\right )\right ) \log ^2\left (2+x+\log \left ((-4+x)^2\right )\right )}+\frac {2 (3+x)}{\left (9 \left (1+e^2\right )+6 x+x^2\right ) \log \left (2+x+\log \left ((-4+x)^2\right )\right )}\right ) \, dx\\ &=2 \int \frac {3+x}{\left (9 \left (1+e^2\right )+6 x+x^2\right ) \log \left (2+x+\log \left ((-4+x)^2\right )\right )} \, dx-\int \frac {(-2+x) \left (-4+\log \left (e^2+\frac {1}{9} (3+x)^2\right )\right )}{(-4+x) \left (2+x+\log \left ((-4+x)^2\right )\right ) \log ^2\left (2+x+\log \left ((-4+x)^2\right )\right )} \, dx\\ &=2 \int \left (\frac {3}{\left (9 \left (1+e^2\right )+6 x+x^2\right ) \log \left (2+x+\log \left ((-4+x)^2\right )\right )}+\frac {x}{\left (9 \left (1+e^2\right )+6 x+x^2\right ) \log \left (2+x+\log \left ((-4+x)^2\right )\right )}\right ) \, dx-\int \left (\frac {-4+\log \left (e^2+\frac {1}{9} (3+x)^2\right )}{\left (2+x+\log \left ((-4+x)^2\right )\right ) \log ^2\left (2+x+\log \left ((-4+x)^2\right )\right )}+\frac {2 \left (-4+\log \left (e^2+\frac {1}{9} (3+x)^2\right )\right )}{(-4+x) \left (2+x+\log \left ((-4+x)^2\right )\right ) \log ^2\left (2+x+\log \left ((-4+x)^2\right )\right )}\right ) \, dx\\ &=-\left (2 \int \frac {-4+\log \left (e^2+\frac {1}{9} (3+x)^2\right )}{(-4+x) \left (2+x+\log \left ((-4+x)^2\right )\right ) \log ^2\left (2+x+\log \left ((-4+x)^2\right )\right )} \, dx\right )+2 \int \frac {x}{\left (9 \left (1+e^2\right )+6 x+x^2\right ) \log \left (2+x+\log \left ((-4+x)^2\right )\right )} \, dx+6 \int \frac {1}{\left (9 \left (1+e^2\right )+6 x+x^2\right ) \log \left (2+x+\log \left ((-4+x)^2\right )\right )} \, dx-\int \frac {-4+\log \left (e^2+\frac {1}{9} (3+x)^2\right )}{\left (2+x+\log \left ((-4+x)^2\right )\right ) \log ^2\left (2+x+\log \left ((-4+x)^2\right )\right )} \, dx\\ &=-\left (2 \int \left (-\frac {4}{(-4+x) \left (2+x+\log \left ((-4+x)^2\right )\right ) \log ^2\left (2+x+\log \left ((-4+x)^2\right )\right )}+\frac {\log \left (1+e^2+\frac {2 x}{3}+\frac {x^2}{9}\right )}{(-4+x) \left (2+x+\log \left ((-4+x)^2\right )\right ) \log ^2\left (2+x+\log \left ((-4+x)^2\right )\right )}\right ) \, dx\right )+2 \int \left (\frac {1+\frac {i}{e}}{(6-6 i e+2 x) \log \left (2+x+\log \left ((-4+x)^2\right )\right )}+\frac {1-\frac {i}{e}}{(6+6 i e+2 x) \log \left (2+x+\log \left ((-4+x)^2\right )\right )}\right ) \, dx+6 \int \left (\frac {i}{3 e (-6+6 i e-2 x) \log \left (2+x+\log \left ((-4+x)^2\right )\right )}+\frac {i}{3 e (6+6 i e+2 x) \log \left (2+x+\log \left ((-4+x)^2\right )\right )}\right ) \, dx-\int \left (-\frac {4}{\left (2+x+\log \left ((-4+x)^2\right )\right ) \log ^2\left (2+x+\log \left ((-4+x)^2\right )\right )}+\frac {\log \left (1+e^2+\frac {2 x}{3}+\frac {x^2}{9}\right )}{\left (2+x+\log \left ((-4+x)^2\right )\right ) \log ^2\left (2+x+\log \left ((-4+x)^2\right )\right )}\right ) \, dx\\ &=-\left (2 \int \frac {\log \left (1+e^2+\frac {2 x}{3}+\frac {x^2}{9}\right )}{(-4+x) \left (2+x+\log \left ((-4+x)^2\right )\right ) \log ^2\left (2+x+\log \left ((-4+x)^2\right )\right )} \, dx\right )+4 \int \frac {1}{\left (2+x+\log \left ((-4+x)^2\right )\right ) \log ^2\left (2+x+\log \left ((-4+x)^2\right )\right )} \, dx+8 \int \frac {1}{(-4+x) \left (2+x+\log \left ((-4+x)^2\right )\right ) \log ^2\left (2+x+\log \left ((-4+x)^2\right )\right )} \, dx+\frac {(2 i) \int \frac {1}{(-6+6 i e-2 x) \log \left (2+x+\log \left ((-4+x)^2\right )\right )} \, dx}{e}+\frac {(2 i) \int \frac {1}{(6+6 i e+2 x) \log \left (2+x+\log \left ((-4+x)^2\right )\right )} \, dx}{e}-\frac {(2 (i-e)) \int \frac {1}{(6+6 i e+2 x) \log \left (2+x+\log \left ((-4+x)^2\right )\right )} \, dx}{e}+\frac {(2 (i+e)) \int \frac {1}{(6-6 i e+2 x) \log \left (2+x+\log \left ((-4+x)^2\right )\right )} \, dx}{e}-\int \frac {\log \left (1+e^2+\frac {2 x}{3}+\frac {x^2}{9}\right )}{\left (2+x+\log \left ((-4+x)^2\right )\right ) \log ^2\left (2+x+\log \left ((-4+x)^2\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 29, normalized size = 1.00 \begin {gather*} \frac {-4+\log \left (e^2+\frac {1}{9} (3+x)^2\right )}{\log \left (2+x+\log \left ((-4+x)^2\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 31, normalized size = 1.07 \begin {gather*} \frac {\log \left (\frac {1}{9} \, x^{2} + \frac {2}{3} \, x + e^{2} + 1\right ) - 4}{\log \left (x + \log \left (x^{2} - 8 \, x + 16\right ) + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.93, size = 38, normalized size = 1.31 \begin {gather*} -\frac {2 \, \log \relax (3) - \log \left (x^{2} + 6 \, x + 9 \, e^{2} + 9\right ) + 4}{\log \left (x + \log \left (x^{2} - 8 \, x + 16\right ) + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.12, size = 63, normalized size = 2.17
method | result | size |
risch | \(\frac {\ln \left ({\mathrm e}^{2}+\frac {x^{2}}{9}+\frac {2 x}{3}+1\right )-4}{\ln \left (2 \ln \left (x -4\right )-\frac {i \pi \,\mathrm {csgn}\left (i \left (x -4\right )^{2}\right ) \left (-\mathrm {csgn}\left (i \left (x -4\right )^{2}\right )+\mathrm {csgn}\left (i \left (x -4\right )\right )\right )^{2}}{2}+2+x \right )}\) | \(63\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 35, normalized size = 1.21 \begin {gather*} -\frac {2 \, \log \relax (3) - \log \left (x^{2} + 6 \, x + 9 \, e^{2} + 9\right ) + 4}{\log \left (x + 2 \, \log \left (x - 4\right ) + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.55, size = 49, normalized size = 1.69 \begin {gather*} -\frac {2\,\ln \left (x+\ln \left (x^2-8\,x+16\right )+2\right )-\ln \left (\frac {x^2}{9}+\frac {2\,x}{3}+{\mathrm {e}}^2+1\right )+4}{\ln \left (x+\ln \left (x^2-8\,x+16\right )+2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.46, size = 32, normalized size = 1.10 \begin {gather*} \frac {\log {\left (\frac {x^{2}}{9} + \frac {2 x}{3} + 1 + e^{2} \right )} - 4}{\log {\left (x + \log {\left (x^{2} - 8 x + 16 \right )} + 2 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________