Optimal. Leaf size=23 \[ \frac {e^x}{2}-e^{-6+3 x}-e^4 x \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {12, 14, 2194} \begin {gather*} -e^4 x+\frac {e^x}{2}-e^{3 x-6} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {-2 e^4 x+e^x x-6 e^{-6+3 x} x}{x} \, dx\\ &=\frac {1}{2} \int \left (-2 e^4+e^x-6 e^{-6+3 x}\right ) \, dx\\ &=-e^4 x+\frac {\int e^x \, dx}{2}-3 \int e^{-6+3 x} \, dx\\ &=\frac {e^x}{2}-e^{-6+3 x}-e^4 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 23, normalized size = 1.00 \begin {gather*} \frac {e^x}{2}-e^{-6+3 x}-e^4 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 22, normalized size = 0.96 \begin {gather*} -\frac {1}{2} \, {\left (2 \, x e^{10} + 2 \, e^{\left (3 \, x\right )} - e^{\left (x + 6\right )}\right )} e^{\left (-6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 22, normalized size = 0.96 \begin {gather*} -\frac {1}{2} \, {\left (2 \, x e^{10} + 2 \, e^{\left (3 \, x\right )} - e^{\left (x + 6\right )}\right )} e^{\left (-6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 19, normalized size = 0.83
method | result | size |
risch | \(-x \,{\mathrm e}^{4}-{\mathrm e}^{3 x -6}+\frac {{\mathrm e}^{x}}{2}\) | \(19\) |
default | \(\frac {{\mathrm e}^{x}}{2}-{\mathrm e}^{\ln \relax (x )+4}-{\mathrm e}^{3 x -6}\) | \(21\) |
norman | \(-x \,{\mathrm e}^{4}-{\mathrm e}^{-6} {\mathrm e}^{3 x}+\frac {{\mathrm e}^{x}}{2}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 18, normalized size = 0.78 \begin {gather*} -x e^{4} - e^{\left (3 \, x - 6\right )} + \frac {1}{2} \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 18, normalized size = 0.78 \begin {gather*} \frac {{\mathrm {e}}^x}{2}-{\mathrm {e}}^{3\,x-6}-x\,{\mathrm {e}}^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 22, normalized size = 0.96 \begin {gather*} - x e^{4} + \frac {- 2 e^{3 x} + e^{6} e^{x}}{2 e^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________