Optimal. Leaf size=22 \[ \frac {5 \left (1-x-(1+8 x)^4\right )}{x+\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.51, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {165+1920 x+8320 x^2-61440 x^4+\left (-165-3840 x-30720 x^2-81920 x^3\right ) \log (x)}{x^2+2 x \log (x)+\log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {165+1920 x+8320 x^2-61440 x^4+\left (-165-3840 x-30720 x^2-81920 x^3\right ) \log (x)}{(x+\log (x))^2} \, dx\\ &=\int \left (\frac {5 \left (33+417 x+2432 x^2+6144 x^3+4096 x^4\right )}{(x+\log (x))^2}-\frac {5 \left (33+768 x+6144 x^2+16384 x^3\right )}{x+\log (x)}\right ) \, dx\\ &=5 \int \frac {33+417 x+2432 x^2+6144 x^3+4096 x^4}{(x+\log (x))^2} \, dx-5 \int \frac {33+768 x+6144 x^2+16384 x^3}{x+\log (x)} \, dx\\ &=5 \int \left (\frac {33}{(x+\log (x))^2}+\frac {417 x}{(x+\log (x))^2}+\frac {2432 x^2}{(x+\log (x))^2}+\frac {6144 x^3}{(x+\log (x))^2}+\frac {4096 x^4}{(x+\log (x))^2}\right ) \, dx-5 \int \left (\frac {33}{x+\log (x)}+\frac {768 x}{x+\log (x)}+\frac {6144 x^2}{x+\log (x)}+\frac {16384 x^3}{x+\log (x)}\right ) \, dx\\ &=165 \int \frac {1}{(x+\log (x))^2} \, dx-165 \int \frac {1}{x+\log (x)} \, dx+2085 \int \frac {x}{(x+\log (x))^2} \, dx-3840 \int \frac {x}{x+\log (x)} \, dx+12160 \int \frac {x^2}{(x+\log (x))^2} \, dx+20480 \int \frac {x^4}{(x+\log (x))^2} \, dx+30720 \int \frac {x^3}{(x+\log (x))^2} \, dx-30720 \int \frac {x^2}{x+\log (x)} \, dx-81920 \int \frac {x^3}{x+\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 24, normalized size = 1.09 \begin {gather*} -\frac {5 x \left (33+384 x+2048 x^2+4096 x^3\right )}{x+\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 27, normalized size = 1.23 \begin {gather*} -\frac {5 \, {\left (4096 \, x^{4} + 2048 \, x^{3} + 384 \, x^{2} + 33 \, x\right )}}{x + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 27, normalized size = 1.23 \begin {gather*} -\frac {5 \, {\left (4096 \, x^{4} + 2048 \, x^{3} + 384 \, x^{2} + 33 \, x\right )}}{x + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 25, normalized size = 1.14
method | result | size |
risch | \(-\frac {5 \left (4096 x^{3}+2048 x^{2}+384 x +33\right ) x}{x +\ln \relax (x )}\) | \(25\) |
norman | \(\frac {165 \ln \relax (x )-1920 x^{2}-10240 x^{3}-20480 x^{4}}{x +\ln \relax (x )}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.65, size = 27, normalized size = 1.23 \begin {gather*} -\frac {5 \, {\left (4096 \, x^{4} + 2048 \, x^{3} + 384 \, x^{2} + 33 \, x\right )}}{x + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.20, size = 24, normalized size = 1.09 \begin {gather*} -\frac {5\,x\,\left (4096\,x^3+2048\,x^2+384\,x+33\right )}{x+\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 24, normalized size = 1.09 \begin {gather*} \frac {- 20480 x^{4} - 10240 x^{3} - 1920 x^{2} - 165 x}{x + \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________