Optimal. Leaf size=19 \[ 5 e^{\log ^2\left (\frac {x^2 \log (5)}{\log \left (x^3\right )}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.88, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 4, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {6741, 12, 6742, 6706} \begin {gather*} 5 e^{\log ^2\left (\frac {x^2 \log (5)}{\log \left (x^3\right )}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=5 e^{\log ^2\left (\frac {x^2 \log (5)}{\log \left (x^3\right )}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 19, normalized size = 1.00 \begin {gather*} 5 e^{\log ^2\left (\frac {x^2 \log (5)}{\log \left (x^3\right )}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.13, size = 18, normalized size = 0.95 \begin {gather*} 5 \, e^{\left (\log \left (\frac {x^{2} \log \relax (5)}{\log \left (x^{3}\right )}\right )^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.51, size = 18, normalized size = 0.95 \begin {gather*} 5 \, e^{\left (\log \left (\frac {x^{2} \log \relax (5)}{\log \left (x^{3}\right )}\right )^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.70, size = 0, normalized size = 0.00 \[\int \frac {\left (20 \ln \left (x^{3}\right )-30\right ) \ln \left (\frac {x^{2} \ln \relax (5)}{\ln \left (x^{3}\right )}\right ) {\mathrm e}^{\ln \left (\frac {x^{2} \ln \relax (5)}{\ln \left (x^{3}\right )}\right )^{2}}}{x \ln \left (x^{3}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.79, size = 68, normalized size = 3.58 \begin {gather*} \frac {5 \, e^{\left (\log \relax (3)^{2} - 4 \, \log \relax (3) \log \relax (x) + 4 \, \log \relax (x)^{2} + 4 \, \log \relax (x) \log \left (\log \relax (5)\right ) + \log \left (\log \relax (5)\right )^{2} + 2 \, \log \relax (3) \log \left (\log \relax (x)\right ) - 4 \, \log \relax (x) \log \left (\log \relax (x)\right ) - 2 \, \log \left (\log \relax (5)\right ) \log \left (\log \relax (x)\right ) + \log \left (\log \relax (x)\right )^{2}\right )}}{3^{2 \, \log \left (\log \relax (5)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.26, size = 51, normalized size = 2.68 \begin {gather*} 5\,{\mathrm {e}}^{{\ln \left (x^2\right )}^2}\,{\mathrm {e}}^{{\ln \left (\ln \relax (5)\right )}^2}\,{\mathrm {e}}^{{\ln \left (\frac {1}{\ln \left (x^3\right )}\right )}^2}\,{\left (\frac {1}{\ln \left (x^3\right )}\right )}^{2\,\ln \left (x^2\right )+2\,\ln \left (\ln \relax (5)\right )}\,{\left (x^4\right )}^{\ln \left (\ln \relax (5)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.54, size = 17, normalized size = 0.89 \begin {gather*} 5 e^{\log {\left (\frac {x^{2} \log {\relax (5 )}}{\log {\left (x^{3} \right )}} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________