Optimal. Leaf size=25 \[ x+\frac {9}{2} \left (1+x+x^2\right ) \left (e^3+x+2 \log (5-x)\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.20, antiderivative size = 69, normalized size of antiderivative = 2.76, number of steps used = 7, number of rules used = 4, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {6742, 1850, 2395, 43} \begin {gather*} \frac {9 x^3}{2}+\frac {9}{2} \left (2+e^3\right ) x^2-\frac {9 x^2}{2}+\frac {1}{2} \left (119+9 e^3\right ) x-54 x+\frac {9}{4} (2 x+1)^2 \log (5-x)+\frac {27}{4} \log (5-x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 1850
Rule 2395
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {37+45 e^3+\left (61+81 e^3\right ) x+9 \left (11-2 e^3\right ) x^2-27 x^3}{2 (5-x)}+9 (1+2 x) \log (5-x)\right ) \, dx\\ &=\frac {1}{2} \int \frac {37+45 e^3+\left (61+81 e^3\right ) x+9 \left (11-2 e^3\right ) x^2-27 x^3}{5-x} \, dx+9 \int (1+2 x) \log (5-x) \, dx\\ &=\frac {9}{4} (1+2 x)^2 \log (5-x)+\frac {1}{2} \int \left (119 \left (1+\frac {9 e^3}{119}\right )+\frac {558}{-5+x}+18 \left (2+e^3\right ) x+27 x^2\right ) \, dx+\frac {9}{4} \int \frac {(1+2 x)^2}{5-x} \, dx\\ &=\frac {1}{2} \left (119+9 e^3\right ) x+\frac {9}{2} \left (2+e^3\right ) x^2+\frac {9 x^3}{2}+279 \log (5-x)+\frac {9}{4} (1+2 x)^2 \log (5-x)+\frac {9}{4} \int \left (-24-\frac {121}{-5+x}-4 x\right ) \, dx\\ &=-54 x+\frac {1}{2} \left (119+9 e^3\right ) x-\frac {9 x^2}{2}+\frac {9}{2} \left (2+e^3\right ) x^2+\frac {9 x^3}{2}+\frac {27}{4} \log (5-x)+\frac {9}{4} (1+2 x)^2 \log (5-x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.06, size = 60, normalized size = 2.40 \begin {gather*} \frac {1}{2} \left (11 x+9 e^3 x+9 x^2+9 e^3 x^2+9 x^3+18 \log (5-x)+18 x \log (5-x)+18 x^2 \log (5-x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 37, normalized size = 1.48 \begin {gather*} \frac {9}{2} \, x^{3} + \frac {9}{2} \, x^{2} + \frac {9}{2} \, {\left (x^{2} + x\right )} e^{3} + 9 \, {\left (x^{2} + x + 1\right )} \log \left (-x + 5\right ) + \frac {11}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 52, normalized size = 2.08 \begin {gather*} \frac {9}{2} \, x^{3} + \frac {9}{2} \, x^{2} e^{3} + 9 \, x^{2} \log \left (-x + 5\right ) + \frac {9}{2} \, x^{2} + \frac {9}{2} \, x e^{3} + 9 \, x \log \left (-x + 5\right ) + \frac {11}{2} \, x + 9 \, \log \left (x - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.12, size = 49, normalized size = 1.96
method | result | size |
risch | \(\left (9 x^{2}+9 x \right ) \ln \left (5-x \right )+\frac {9 x^{2} {\mathrm e}^{3}}{2}+\frac {9 x^{3}}{2}+\frac {9 x \,{\mathrm e}^{3}}{2}+\frac {9 x^{2}}{2}+\frac {11 x}{2}+9 \ln \left (x -5\right )\) | \(49\) |
norman | \(9 \ln \left (5-x \right )+\left (\frac {9}{2}+\frac {9 \,{\mathrm e}^{3}}{2}\right ) x^{2}+\left (\frac {11}{2}+\frac {9 \,{\mathrm e}^{3}}{2}\right ) x +\frac {9 x^{3}}{2}+9 \ln \left (5-x \right ) x +9 \ln \left (5-x \right ) x^{2}\) | \(53\) |
derivativedivides | \(\frac {9 \,{\mathrm e}^{3} \left (5-x \right )^{2}}{2}+9 \ln \left (5-x \right ) \left (5-x \right )^{2}+72 \left (5-x \right )^{2}-\frac {9 \left (5-x \right )^{3}}{2}-\frac {99 \,{\mathrm e}^{3} \left (5-x \right )}{2}-99 \left (5-x \right ) \ln \left (5-x \right )-1940+388 x +279 \ln \left (5-x \right )\) | \(80\) |
default | \(\frac {9 \,{\mathrm e}^{3} \left (5-x \right )^{2}}{2}+9 \ln \left (5-x \right ) \left (5-x \right )^{2}+72 \left (5-x \right )^{2}-\frac {9 \left (5-x \right )^{3}}{2}-\frac {99 \,{\mathrm e}^{3} \left (5-x \right )}{2}-99 \left (5-x \right ) \ln \left (5-x \right )-1940+388 x +279 \ln \left (5-x \right )\) | \(80\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 112, normalized size = 4.48 \begin {gather*} \frac {9}{2} \, x^{3} + \frac {9}{2} \, x^{2} + \frac {9}{2} \, {\left (x^{2} + 10 \, x + 50 \, \log \left (x - 5\right )\right )} e^{3} - \frac {81}{2} \, {\left (x + 5 \, \log \left (x - 5\right )\right )} e^{3} - \frac {45}{2} \, e^{3} \log \left (x - 5\right ) - \frac {45}{2} \, \log \left (x - 5\right )^{2} + 9 \, {\left (x^{2} + 10 \, x + 50 \, \log \left (x - 5\right )\right )} \log \left (-x + 5\right ) - 81 \, {\left (x + 5 \, \log \left (x - 5\right )\right )} \log \left (-x + 5\right ) - \frac {45}{2} \, \log \left (-x + 5\right )^{2} + \frac {11}{2} \, x + 9 \, \log \left (x - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.28, size = 46, normalized size = 1.84 \begin {gather*} 9\,\ln \left (x-5\right )+x^2\,\left (\frac {9\,{\mathrm {e}}^3}{2}+9\,\ln \left (5-x\right )+\frac {9}{2}\right )+\frac {9\,x^3}{2}+x\,\left (\frac {9\,{\mathrm {e}}^3}{2}+9\,\ln \left (5-x\right )+\frac {11}{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 51, normalized size = 2.04 \begin {gather*} \frac {9 x^{3}}{2} + x^{2} \left (\frac {9}{2} + \frac {9 e^{3}}{2}\right ) + x \left (\frac {11}{2} + \frac {9 e^{3}}{2}\right ) + \left (9 x^{2} + 9 x\right ) \log {\left (5 - x \right )} + 9 \log {\left (x - 5 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________