Optimal. Leaf size=19 \[ x-2 x \log \left (\frac {3 x^2}{\log ^2\left (2 e^3\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 17, normalized size of antiderivative = 0.89, number of steps used = 2, number of rules used = 1, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {2295} \begin {gather*} x-2 x \log \left (\frac {3 x^2}{(3+\log (2))^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2295
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-3 x-2 \int \log \left (\frac {3 x^2}{\log ^2\left (2 e^3\right )}\right ) \, dx\\ &=x-2 x \log \left (\frac {3 x^2}{(3+\log (2))^2}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 17, normalized size = 0.89 \begin {gather*} x-2 x \log \left (\frac {3 x^2}{(3+\log (2))^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 23, normalized size = 1.21 \begin {gather*} -2 \, x \log \left (\frac {3 \, x^{2}}{\log \relax (2)^{2} + 6 \, \log \relax (2) + 9}\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 18, normalized size = 0.95 \begin {gather*} -2 \, x \log \left (\frac {3 \, x^{2}}{\log \left (2 \, e^{3}\right )^{2}}\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 18, normalized size = 0.95
method | result | size |
risch | \(-2 \ln \left (\frac {3 x^{2}}{\left (3+\ln \relax (2)\right )^{2}}\right ) x +x\) | \(18\) |
norman | \(x -2 x \ln \left (\frac {3 x^{2}}{\ln \left (2 \,{\mathrm e}^{3}\right )^{2}}\right )\) | \(19\) |
default | \(x +4 \ln \left (3+\ln \relax (2)\right ) x -2 x \ln \relax (3)-2 x \ln \left (x^{2}\right )\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 18, normalized size = 0.95 \begin {gather*} -2 \, x \log \left (\frac {3 \, x^{2}}{\log \left (2 \, e^{3}\right )^{2}}\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.18, size = 28, normalized size = 1.47 \begin {gather*} -x\,\left (2\,\ln \left (x^2\right )-2\,\ln \left (6\,\ln \relax (2)+{\ln \relax (2)}^2+9\right )+2\,\ln \relax (3)-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 19, normalized size = 1.00 \begin {gather*} - 2 x \log {\left (\frac {3 x^{2}}{\log {\left (2 e^{3} \right )}^{2}} \right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________