Optimal. Leaf size=26 \[ 2+25 x^4 \left (e^{-2 (3-2 x)+x}+x\right )^2-\log (4) \]
________________________________________________________________________________________
Rubi [A] time = 0.51, antiderivative size = 30, normalized size of antiderivative = 1.15, number of steps used = 27, number of rules used = 4, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {1593, 2196, 2176, 2194} \begin {gather*} 25 x^6+50 e^{5 x-6} x^5+25 e^{10 x-12} x^4 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=25 x^6+\int e^{-12+10 x} \left (100 x^3+250 x^4\right ) \, dx+\int e^{-6+5 x} \left (250 x^4+250 x^5\right ) \, dx\\ &=25 x^6+\int e^{-12+10 x} x^3 (100+250 x) \, dx+\int e^{-6+5 x} x^4 (250+250 x) \, dx\\ &=25 x^6+\int \left (100 e^{-12+10 x} x^3+250 e^{-12+10 x} x^4\right ) \, dx+\int \left (250 e^{-6+5 x} x^4+250 e^{-6+5 x} x^5\right ) \, dx\\ &=25 x^6+100 \int e^{-12+10 x} x^3 \, dx+250 \int e^{-6+5 x} x^4 \, dx+250 \int e^{-12+10 x} x^4 \, dx+250 \int e^{-6+5 x} x^5 \, dx\\ &=10 e^{-12+10 x} x^3+50 e^{-6+5 x} x^4+25 e^{-12+10 x} x^4+50 e^{-6+5 x} x^5+25 x^6-30 \int e^{-12+10 x} x^2 \, dx-100 \int e^{-12+10 x} x^3 \, dx-200 \int e^{-6+5 x} x^3 \, dx-250 \int e^{-6+5 x} x^4 \, dx\\ &=-3 e^{-12+10 x} x^2-40 e^{-6+5 x} x^3+25 e^{-12+10 x} x^4+50 e^{-6+5 x} x^5+25 x^6+6 \int e^{-12+10 x} x \, dx+30 \int e^{-12+10 x} x^2 \, dx+120 \int e^{-6+5 x} x^2 \, dx+200 \int e^{-6+5 x} x^3 \, dx\\ &=\frac {3}{5} e^{-12+10 x} x+24 e^{-6+5 x} x^2+25 e^{-12+10 x} x^4+50 e^{-6+5 x} x^5+25 x^6-\frac {3}{5} \int e^{-12+10 x} \, dx-6 \int e^{-12+10 x} x \, dx-48 \int e^{-6+5 x} x \, dx-120 \int e^{-6+5 x} x^2 \, dx\\ &=-\frac {3}{50} e^{-12+10 x}-\frac {48}{5} e^{-6+5 x} x+25 e^{-12+10 x} x^4+50 e^{-6+5 x} x^5+25 x^6+\frac {3}{5} \int e^{-12+10 x} \, dx+\frac {48}{5} \int e^{-6+5 x} \, dx+48 \int e^{-6+5 x} x \, dx\\ &=\frac {48}{25} e^{-6+5 x}+25 e^{-12+10 x} x^4+50 e^{-6+5 x} x^5+25 x^6-\frac {48}{5} \int e^{-6+5 x} \, dx\\ &=25 e^{-12+10 x} x^4+50 e^{-6+5 x} x^5+25 x^6\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 21, normalized size = 0.81 \begin {gather*} \frac {25 x^4 \left (e^{5 x}+e^6 x\right )^2}{e^{12}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 28, normalized size = 1.08 \begin {gather*} 25 \, x^{6} + 50 \, x^{5} e^{\left (5 \, x - 6\right )} + 25 \, x^{4} e^{\left (10 \, x - 12\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 28, normalized size = 1.08 \begin {gather*} 25 \, x^{6} + 50 \, x^{5} e^{\left (5 \, x - 6\right )} + 25 \, x^{4} e^{\left (10 \, x - 12\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 29, normalized size = 1.12
method | result | size |
risch | \(25 x^{6}+25 x^{4} {\mathrm e}^{10 x -12}+50 x^{5} {\mathrm e}^{5 x -6}\) | \(29\) |
norman | \(25 x^{6}+25 x^{4} {\mathrm e}^{10 x -12}+50 x^{5} {\mathrm e}^{5 x -6}\) | \(31\) |
derivativedivides | \(25 x^{6}+\frac {1296 \,{\mathrm e}^{10 x -12}}{25}+\frac {864 \,{\mathrm e}^{10 x -12} \left (5 x -6\right )}{25}+\frac {216 \,{\mathrm e}^{10 x -12} \left (5 x -6\right )^{2}}{25}+\frac {24 \,{\mathrm e}^{10 x -12} \left (5 x -6\right )^{3}}{25}+\frac {{\mathrm e}^{10 x -12} \left (5 x -6\right )^{4}}{25}+\frac {2592 \,{\mathrm e}^{5 x -6} \left (5 x -6\right )}{25}+\frac {15552 \,{\mathrm e}^{5 x -6}}{125}+\frac {864 \,{\mathrm e}^{5 x -6} \left (5 x -6\right )^{2}}{25}+\frac {144 \,{\mathrm e}^{5 x -6} \left (5 x -6\right )^{3}}{25}+\frac {12 \,{\mathrm e}^{5 x -6} \left (5 x -6\right )^{4}}{25}+\frac {2 \,{\mathrm e}^{5 x -6} \left (5 x -6\right )^{5}}{125}\) | \(164\) |
default | \(25 x^{6}+\frac {1296 \,{\mathrm e}^{10 x -12}}{25}+\frac {864 \,{\mathrm e}^{10 x -12} \left (5 x -6\right )}{25}+\frac {216 \,{\mathrm e}^{10 x -12} \left (5 x -6\right )^{2}}{25}+\frac {24 \,{\mathrm e}^{10 x -12} \left (5 x -6\right )^{3}}{25}+\frac {{\mathrm e}^{10 x -12} \left (5 x -6\right )^{4}}{25}+\frac {2592 \,{\mathrm e}^{5 x -6} \left (5 x -6\right )}{25}+\frac {15552 \,{\mathrm e}^{5 x -6}}{125}+\frac {864 \,{\mathrm e}^{5 x -6} \left (5 x -6\right )^{2}}{25}+\frac {144 \,{\mathrm e}^{5 x -6} \left (5 x -6\right )^{3}}{25}+\frac {12 \,{\mathrm e}^{5 x -6} \left (5 x -6\right )^{4}}{25}+\frac {2 \,{\mathrm e}^{5 x -6} \left (5 x -6\right )^{5}}{125}\) | \(164\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.61, size = 78, normalized size = 3.00 \begin {gather*} 25 \, x^{6} + 25 \, x^{4} e^{\left (10 \, x - 12\right )} + \frac {2}{25} \, {\left (625 \, x^{5} - 625 \, x^{4} + 500 \, x^{3} - 300 \, x^{2} + 120 \, x - 24\right )} e^{\left (5 \, x - 6\right )} + \frac {2}{25} \, {\left (625 \, x^{4} - 500 \, x^{3} + 300 \, x^{2} - 120 \, x + 24\right )} e^{\left (5 \, x - 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.53, size = 18, normalized size = 0.69 \begin {gather*} 25\,x^4\,{\mathrm {e}}^{-12}\,{\left ({\mathrm {e}}^{5\,x}+x\,{\mathrm {e}}^6\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 27, normalized size = 1.04 \begin {gather*} 25 x^{6} + 50 x^{5} e^{5 x - 6} + 25 x^{4} e^{10 x - 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________