Optimal. Leaf size=23 \[ \frac {5\ 2^{-3+\frac {5 x}{4}}}{-3+e^3+\frac {5}{x}} \]
________________________________________________________________________________________
Rubi [B] time = 0.09, antiderivative size = 57, normalized size of antiderivative = 2.48, number of steps used = 2, number of rules used = 2, integrand size = 63, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.032, Rules used = {6, 2288} \begin {gather*} \frac {5\ 2^{\frac {5 x}{4}-3} \left (e^3 x^2-3 x^2+5 x\right )}{\left (9+e^6\right ) x^2+2 e^3 \left (5 x-3 x^2\right )-30 x+25} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2^{5 x/4} \left (100+\left (125 x-75 x^2+25 e^3 x^2\right ) \log (2)\right )}{800-960 x+\left (288+32 e^6\right ) x^2+e^3 \left (320 x-192 x^2\right )} \, dx\\ &=\frac {5\ 2^{-3+\frac {5 x}{4}} \left (5 x-3 x^2+e^3 x^2\right )}{25-30 x+\left (9+e^6\right ) x^2+2 e^3 \left (5 x-3 x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 39, normalized size = 1.70 \begin {gather*} \frac {5\ 2^{-3+\frac {5 x}{4}} x \left (\left (-3+e^3\right ) x \log (2)+\log (32)\right )}{\left (5+\left (-3+e^3\right ) x\right )^2 \log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 19, normalized size = 0.83 \begin {gather*} \frac {5 \cdot 2^{\frac {5}{4} \, x} x}{8 \, {\left (x e^{3} - 3 \, x + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {25 \, {\left ({\left (x^{2} e^{3} - 3 \, x^{2} + 5 \, x\right )} \log \relax (2) + 4\right )} 2^{\frac {5}{4} \, x}}{32 \, {\left (x^{2} e^{6} + 9 \, x^{2} - 2 \, {\left (3 \, x^{2} - 5 \, x\right )} e^{3} - 30 \, x + 25\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 20, normalized size = 0.87
method | result | size |
risch | \(\frac {5 x 2^{\frac {5 x}{4}}}{8 \left (x \,{\mathrm e}^{3}-3 x +5\right )}\) | \(20\) |
gosper | \(\frac {5 x \,{\mathrm e}^{\frac {5 x \ln \relax (2)}{4}}}{8 \left (x \,{\mathrm e}^{3}-3 x +5\right )}\) | \(21\) |
norman | \(\frac {5 x \,{\mathrm e}^{\frac {5 x \ln \relax (2)}{4}}}{8 \left (x \,{\mathrm e}^{3}-3 x +5\right )}\) | \(21\) |
derivativedivides | \(\frac {-\frac {125 \,{\mathrm e}^{\frac {5 x \ln \relax (2)}{4}} \ln \relax (2)^{2}}{8 \left ({\mathrm e}^{3}-3\right ) \left (5 \,{\mathrm e}^{3} \ln \relax (2) x +25 \ln \relax (2)-15 x \ln \relax (2)\right )}-\frac {125 \ln \relax (2)^{2} {\mathrm e}^{-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}} \expIntegralEi \left (1, -\frac {5 x \ln \relax (2)}{4}-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}\right )}{32 \left ({\mathrm e}^{3}-3\right )^{2}}+\frac {3125 \,{\mathrm e}^{\frac {5 x \ln \relax (2)}{4}} \ln \relax (2)^{3}}{32 \left ({\mathrm e}^{6}-6 \,{\mathrm e}^{3}+9\right ) \left (5 \,{\mathrm e}^{3} \ln \relax (2) x +25 \ln \relax (2)-15 x \ln \relax (2)\right )}+\frac {125 \ln \relax (2)^{2} {\mathrm e}^{-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}} \expIntegralEi \left (1, -\frac {5 x \ln \relax (2)}{4}-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}\right ) {\mathrm e}^{3}}{32 \left (-{\mathrm e}^{6}+6 \,{\mathrm e}^{3}-9\right ) \left ({\mathrm e}^{3}-3\right )}-\frac {3125 \ln \relax (2)^{3} {\mathrm e}^{-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}} \expIntegralEi \left (1, -\frac {5 x \ln \relax (2)}{4}-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}\right )}{128 \left (-{\mathrm e}^{6}+6 \,{\mathrm e}^{3}-9\right ) \left ({\mathrm e}^{3}-3\right )}-\frac {375 \ln \relax (2)^{2} {\mathrm e}^{-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}} \expIntegralEi \left (1, -\frac {5 x \ln \relax (2)}{4}-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}\right )}{32 \left (-{\mathrm e}^{6}+6 \,{\mathrm e}^{3}-9\right ) \left ({\mathrm e}^{3}-3\right )}-\frac {30 \ln \relax (2) {\mathrm e}^{\frac {5 x \ln \relax (2)}{4}}}{16 \,{\mathrm e}^{6}-96 \,{\mathrm e}^{3}+144}+\frac {9375 \ln \relax (2)^{3} {\mathrm e}^{\frac {5 x \ln \relax (2)}{4}}}{32 \left ({\mathrm e}^{3}-3\right ) \left ({\mathrm e}^{6}-6 \,{\mathrm e}^{3}+9\right ) \left (5 \,{\mathrm e}^{3} \ln \relax (2) x +25 \ln \relax (2)-15 x \ln \relax (2)\right )}-\frac {750 \ln \relax (2)^{2} {\mathrm e}^{-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}} \expIntegralEi \left (1, -\frac {5 x \ln \relax (2)}{4}-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}\right ) {\mathrm e}^{3}}{\left ({\mathrm e}^{3}-3\right )^{2} \left (16 \,{\mathrm e}^{6}-96 \,{\mathrm e}^{3}+144\right )}+\frac {1125 \ln \relax (2)^{2} {\mathrm e}^{-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}} \expIntegralEi \left (1, -\frac {5 x \ln \relax (2)}{4}-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}\right )}{\left ({\mathrm e}^{3}-3\right )^{2} \left (16 \,{\mathrm e}^{6}-96 \,{\mathrm e}^{3}+144\right )}+\frac {9375 \ln \relax (2)^{3} {\mathrm e}^{-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}} \expIntegralEi \left (1, -\frac {5 x \ln \relax (2)}{4}-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}\right )}{8 \left ({\mathrm e}^{3}-3\right )^{2} \left (16 \,{\mathrm e}^{6}-96 \,{\mathrm e}^{3}+144\right )}+\frac {20 \,{\mathrm e}^{3} \ln \relax (2) {\mathrm e}^{\frac {5 x \ln \relax (2)}{4}}}{32 \,{\mathrm e}^{6}-192 \,{\mathrm e}^{3}+288}-\frac {3125 \,{\mathrm e}^{3} \ln \relax (2)^{3} {\mathrm e}^{\frac {5 x \ln \relax (2)}{4}}}{32 \left ({\mathrm e}^{3}-3\right ) \left ({\mathrm e}^{6}-6 \,{\mathrm e}^{3}+9\right ) \left (5 \,{\mathrm e}^{3} \ln \relax (2) x +25 \ln \relax (2)-15 x \ln \relax (2)\right )}+\frac {125 \,{\mathrm e}^{6} \ln \relax (2)^{2} {\mathrm e}^{-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}} \expIntegralEi \left (1, -\frac {5 x \ln \relax (2)}{4}-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}\right )}{\left ({\mathrm e}^{3}-3\right )^{2} \left (16 \,{\mathrm e}^{6}-96 \,{\mathrm e}^{3}+144\right )}-\frac {3125 \ln \relax (2)^{3} {\mathrm e}^{-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}} \expIntegralEi \left (1, -\frac {5 x \ln \relax (2)}{4}-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}\right ) {\mathrm e}^{3}}{8 \left ({\mathrm e}^{3}-3\right )^{2} \left (16 \,{\mathrm e}^{6}-96 \,{\mathrm e}^{3}+144\right )}}{\ln \relax (2)}\) | \(723\) |
default | \(\frac {-\frac {125 \,{\mathrm e}^{\frac {5 x \ln \relax (2)}{4}} \ln \relax (2)^{2}}{8 \left ({\mathrm e}^{3}-3\right ) \left (5 \,{\mathrm e}^{3} \ln \relax (2) x +25 \ln \relax (2)-15 x \ln \relax (2)\right )}-\frac {125 \ln \relax (2)^{2} {\mathrm e}^{-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}} \expIntegralEi \left (1, -\frac {5 x \ln \relax (2)}{4}-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}\right )}{32 \left ({\mathrm e}^{3}-3\right )^{2}}+\frac {3125 \,{\mathrm e}^{\frac {5 x \ln \relax (2)}{4}} \ln \relax (2)^{3}}{32 \left ({\mathrm e}^{6}-6 \,{\mathrm e}^{3}+9\right ) \left (5 \,{\mathrm e}^{3} \ln \relax (2) x +25 \ln \relax (2)-15 x \ln \relax (2)\right )}+\frac {125 \ln \relax (2)^{2} {\mathrm e}^{-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}} \expIntegralEi \left (1, -\frac {5 x \ln \relax (2)}{4}-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}\right ) {\mathrm e}^{3}}{32 \left (-{\mathrm e}^{6}+6 \,{\mathrm e}^{3}-9\right ) \left ({\mathrm e}^{3}-3\right )}-\frac {3125 \ln \relax (2)^{3} {\mathrm e}^{-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}} \expIntegralEi \left (1, -\frac {5 x \ln \relax (2)}{4}-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}\right )}{128 \left (-{\mathrm e}^{6}+6 \,{\mathrm e}^{3}-9\right ) \left ({\mathrm e}^{3}-3\right )}-\frac {375 \ln \relax (2)^{2} {\mathrm e}^{-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}} \expIntegralEi \left (1, -\frac {5 x \ln \relax (2)}{4}-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}\right )}{32 \left (-{\mathrm e}^{6}+6 \,{\mathrm e}^{3}-9\right ) \left ({\mathrm e}^{3}-3\right )}-\frac {30 \ln \relax (2) {\mathrm e}^{\frac {5 x \ln \relax (2)}{4}}}{16 \,{\mathrm e}^{6}-96 \,{\mathrm e}^{3}+144}+\frac {9375 \ln \relax (2)^{3} {\mathrm e}^{\frac {5 x \ln \relax (2)}{4}}}{32 \left ({\mathrm e}^{3}-3\right ) \left ({\mathrm e}^{6}-6 \,{\mathrm e}^{3}+9\right ) \left (5 \,{\mathrm e}^{3} \ln \relax (2) x +25 \ln \relax (2)-15 x \ln \relax (2)\right )}-\frac {750 \ln \relax (2)^{2} {\mathrm e}^{-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}} \expIntegralEi \left (1, -\frac {5 x \ln \relax (2)}{4}-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}\right ) {\mathrm e}^{3}}{\left ({\mathrm e}^{3}-3\right )^{2} \left (16 \,{\mathrm e}^{6}-96 \,{\mathrm e}^{3}+144\right )}+\frac {1125 \ln \relax (2)^{2} {\mathrm e}^{-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}} \expIntegralEi \left (1, -\frac {5 x \ln \relax (2)}{4}-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}\right )}{\left ({\mathrm e}^{3}-3\right )^{2} \left (16 \,{\mathrm e}^{6}-96 \,{\mathrm e}^{3}+144\right )}+\frac {9375 \ln \relax (2)^{3} {\mathrm e}^{-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}} \expIntegralEi \left (1, -\frac {5 x \ln \relax (2)}{4}-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}\right )}{8 \left ({\mathrm e}^{3}-3\right )^{2} \left (16 \,{\mathrm e}^{6}-96 \,{\mathrm e}^{3}+144\right )}+\frac {20 \,{\mathrm e}^{3} \ln \relax (2) {\mathrm e}^{\frac {5 x \ln \relax (2)}{4}}}{32 \,{\mathrm e}^{6}-192 \,{\mathrm e}^{3}+288}-\frac {3125 \,{\mathrm e}^{3} \ln \relax (2)^{3} {\mathrm e}^{\frac {5 x \ln \relax (2)}{4}}}{32 \left ({\mathrm e}^{3}-3\right ) \left ({\mathrm e}^{6}-6 \,{\mathrm e}^{3}+9\right ) \left (5 \,{\mathrm e}^{3} \ln \relax (2) x +25 \ln \relax (2)-15 x \ln \relax (2)\right )}+\frac {125 \,{\mathrm e}^{6} \ln \relax (2)^{2} {\mathrm e}^{-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}} \expIntegralEi \left (1, -\frac {5 x \ln \relax (2)}{4}-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}\right )}{\left ({\mathrm e}^{3}-3\right )^{2} \left (16 \,{\mathrm e}^{6}-96 \,{\mathrm e}^{3}+144\right )}-\frac {3125 \ln \relax (2)^{3} {\mathrm e}^{-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}} \expIntegralEi \left (1, -\frac {5 x \ln \relax (2)}{4}-\frac {25 \ln \relax (2)}{4 \left ({\mathrm e}^{3}-3\right )}\right ) {\mathrm e}^{3}}{8 \left ({\mathrm e}^{3}-3\right )^{2} \left (16 \,{\mathrm e}^{6}-96 \,{\mathrm e}^{3}+144\right )}}{\ln \relax (2)}\) | \(723\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 18, normalized size = 0.78 \begin {gather*} \frac {5 \cdot 2^{\frac {5}{4} \, x} x}{8 \, {\left (x {\left (e^{3} - 3\right )} + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.33, size = 20, normalized size = 0.87 \begin {gather*} \frac {20\,2^{\frac {5\,x}{4}}\,x}{32\,x\,{\mathrm {e}}^3-96\,x+160} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 24, normalized size = 1.04 \begin {gather*} \frac {5 x e^{\frac {5 x \log {\relax (2 )}}{4}}}{- 24 x + 8 x e^{3} + 40} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________