3.72.2 \(\int \frac {-5 e^{21+x} x+e^{42+2 x} (3 e^4-9 x+x^2)+(e^{42+2 x} (-6 e^4+6 x)+e^{21+x} (e^4 (-5-5 x)+5 x+5 x^2)) \log (-e^4+x)}{e^{42+2 x} (9 e^4-9 x)+(e^{21+x} (-30 e^4+30 x)+e^{42+2 x} (36 x-6 x^2+e^4 (-36+6 x))) \log (-e^4+x)+(25 e^4-25 x+e^{21+x} (e^4 (60-10 x)-60 x+10 x^2)+e^{42+2 x} (-36 x+12 x^2-x^3+e^4 (36-12 x+x^2))) \log ^2(-e^4+x)} \, dx\)

Optimal. Leaf size=30 \[ \frac {x}{3-\left (6+5 e^{-21-x}-x\right ) \log \left (-e^4+x\right )} \]

________________________________________________________________________________________

Rubi [F]  time = 75.88, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5 e^{21+x} x+e^{42+2 x} \left (3 e^4-9 x+x^2\right )+\left (e^{42+2 x} \left (-6 e^4+6 x\right )+e^{21+x} \left (e^4 (-5-5 x)+5 x+5 x^2\right )\right ) \log \left (-e^4+x\right )}{e^{42+2 x} \left (9 e^4-9 x\right )+\left (e^{21+x} \left (-30 e^4+30 x\right )+e^{42+2 x} \left (36 x-6 x^2+e^4 (-36+6 x)\right )\right ) \log \left (-e^4+x\right )+\left (25 e^4-25 x+e^{21+x} \left (e^4 (60-10 x)-60 x+10 x^2\right )+e^{42+2 x} \left (-36 x+12 x^2-x^3+e^4 \left (36-12 x+x^2\right )\right )\right ) \log ^2\left (-e^4+x\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(-5*E^(21 + x)*x + E^(42 + 2*x)*(3*E^4 - 9*x + x^2) + (E^(42 + 2*x)*(-6*E^4 + 6*x) + E^(21 + x)*(E^4*(-5 -
 5*x) + 5*x + 5*x^2))*Log[-E^4 + x])/(E^(42 + 2*x)*(9*E^4 - 9*x) + (E^(21 + x)*(-30*E^4 + 30*x) + E^(42 + 2*x)
*(36*x - 6*x^2 + E^4*(-36 + 6*x)))*Log[-E^4 + x] + (25*E^4 - 25*x + E^(21 + x)*(E^4*(60 - 10*x) - 60*x + 10*x^
2) + E^(42 + 2*x)*(-36*x + 12*x^2 - x^3 + E^4*(36 - 12*x + x^2)))*Log[-E^4 + x]^2),x]

[Out]

15*Defer[Int][E^(21 + x)/((3*E^(21 + x) + (-5 + E^(21 + x)*(-6 + x))*Log[-E^4 + x])^2*(3 + (-6 + x)*Log[-E^4 +
 x])), x] - 15*Defer[Int][E^(25 + x)/((E^4 - x)*(3*E^(21 + x) + (-5 + E^(21 + x)*(-6 + x))*Log[-E^4 + x])^2*(3
 + (-6 + x)*Log[-E^4 + x])), x] - 15*Defer[Int][(E^(21 + x)*x*Log[-E^4 + x])/((3*E^(21 + x) + (-5 + E^(21 + x)
*(-6 + x))*Log[-E^4 + x])^2*(3 + (-6 + x)*Log[-E^4 + x])), x] - 25*Defer[Int][(E^(25 + x)*Log[-E^4 + x]^2)/((3
*E^(21 + x) + (-5 + E^(21 + x)*(-6 + x))*Log[-E^4 + x])^2*(3 + (-6 + x)*Log[-E^4 + x])), x] + 5*(5 + E^4)*Defe
r[Int][(E^(25 + x)*Log[-E^4 + x]^2)/((3*E^(21 + x) + (-5 + E^(21 + x)*(-6 + x))*Log[-E^4 + x])^2*(3 + (-6 + x)
*Log[-E^4 + x])), x] - 5*Defer[Int][(E^(29 + x)*Log[-E^4 + x]^2)/((3*E^(21 + x) + (-5 + E^(21 + x)*(-6 + x))*L
og[-E^4 + x])^2*(3 + (-6 + x)*Log[-E^4 + x])), x] + 25*Defer[Int][(E^(29 + x)*Log[-E^4 + x]^2)/((E^4 - x)*(3*E
^(21 + x) + (-5 + E^(21 + x)*(-6 + x))*Log[-E^4 + x])^2*(3 + (-6 + x)*Log[-E^4 + x])), x] - 5*(5 + E^4)*Defer[
Int][(E^(29 + x)*Log[-E^4 + x]^2)/((E^4 - x)*(3*E^(21 + x) + (-5 + E^(21 + x)*(-6 + x))*Log[-E^4 + x])^2*(3 +
(-6 + x)*Log[-E^4 + x])), x] + 5*Defer[Int][(E^(33 + x)*Log[-E^4 + x]^2)/((E^4 - x)*(3*E^(21 + x) + (-5 + E^(2
1 + x)*(-6 + x))*Log[-E^4 + x])^2*(3 + (-6 + x)*Log[-E^4 + x])), x] + 5*(5 + E^4)*Defer[Int][(E^(21 + x)*x*Log
[-E^4 + x]^2)/((3*E^(21 + x) + (-5 + E^(21 + x)*(-6 + x))*Log[-E^4 + x])^2*(3 + (-6 + x)*Log[-E^4 + x])), x] -
 5*Defer[Int][(E^(25 + x)*x*Log[-E^4 + x]^2)/((3*E^(21 + x) + (-5 + E^(21 + x)*(-6 + x))*Log[-E^4 + x])^2*(3 +
 (-6 + x)*Log[-E^4 + x])), x] - 5*Defer[Int][(E^(21 + x)*x^2*Log[-E^4 + x]^2)/((3*E^(21 + x) + (-5 + E^(21 + x
)*(-6 + x))*Log[-E^4 + x])^2*(3 + (-6 + x)*Log[-E^4 + x])), x] + 9*Defer[Int][E^(21 + x)/((3*E^(21 + x) + (-5
+ E^(21 + x)*(-6 + x))*Log[-E^4 + x])*(3 + (-6 + x)*Log[-E^4 + x])), x] - Defer[Int][E^(25 + x)/((3*E^(21 + x)
 + (-5 + E^(21 + x)*(-6 + x))*Log[-E^4 + x])*(3 + (-6 + x)*Log[-E^4 + x])), x] - 6*Defer[Int][E^(25 + x)/((E^4
 - x)*(3*E^(21 + x) + (-5 + E^(21 + x)*(-6 + x))*Log[-E^4 + x])*(3 + (-6 + x)*Log[-E^4 + x])), x] + Defer[Int]
[E^(29 + x)/((E^4 - x)*(3*E^(21 + x) + (-5 + E^(21 + x)*(-6 + x))*Log[-E^4 + x])*(3 + (-6 + x)*Log[-E^4 + x]))
, x] - Defer[Int][(E^(21 + x)*x)/((3*E^(21 + x) + (-5 + E^(21 + x)*(-6 + x))*Log[-E^4 + x])*(3 + (-6 + x)*Log[
-E^4 + x])), x] - 6*Defer[Int][(E^(21 + x)*Log[-E^4 + x])/((3*E^(21 + x) + (-5 + E^(21 + x)*(-6 + x))*Log[-E^4
 + x])*(3 + (-6 + x)*Log[-E^4 + x])), x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{21+x} \left (-5 x+e^{21+x} \left (3 e^4+(-9+x) x\right )-\left (e^4-x\right ) \left (5+6 e^{21+x}+5 x\right ) \log \left (-e^4+x\right )\right )}{\left (e^4-x\right ) \left (3 e^{21+x}+\left (-5+e^{21+x} (-6+x)\right ) \log \left (-e^4+x\right )\right )^2} \, dx\\ &=\int \left (\frac {e^{21+x} \left (3 e^4-9 x+x^2-6 e^4 \log \left (-e^4+x\right )+6 x \log \left (-e^4+x\right )\right )}{\left (e^4-x\right ) \left (3-6 \log \left (-e^4+x\right )+x \log \left (-e^4+x\right )\right ) \left (3 e^{21+x}-5 \log \left (-e^4+x\right )-6 e^{21+x} \log \left (-e^4+x\right )+e^{21+x} x \log \left (-e^4+x\right )\right )}+\frac {5 e^{21+x} x \left (-3-3 e^4 \log \left (-e^4+x\right )+3 x \log \left (-e^4+x\right )+5 e^4 \log ^2\left (-e^4+x\right )-5 \left (1+\frac {e^4}{5}\right ) x \log ^2\left (-e^4+x\right )+x^2 \log ^2\left (-e^4+x\right )\right )}{\left (e^4-x\right ) \left (3-6 \log \left (-e^4+x\right )+x \log \left (-e^4+x\right )\right ) \left (3 e^{21+x}-5 \log \left (-e^4+x\right )-6 e^{21+x} \log \left (-e^4+x\right )+e^{21+x} x \log \left (-e^4+x\right )\right )^2}\right ) \, dx\\ &=5 \int \frac {e^{21+x} x \left (-3-3 e^4 \log \left (-e^4+x\right )+3 x \log \left (-e^4+x\right )+5 e^4 \log ^2\left (-e^4+x\right )-5 \left (1+\frac {e^4}{5}\right ) x \log ^2\left (-e^4+x\right )+x^2 \log ^2\left (-e^4+x\right )\right )}{\left (e^4-x\right ) \left (3-6 \log \left (-e^4+x\right )+x \log \left (-e^4+x\right )\right ) \left (3 e^{21+x}-5 \log \left (-e^4+x\right )-6 e^{21+x} \log \left (-e^4+x\right )+e^{21+x} x \log \left (-e^4+x\right )\right )^2} \, dx+\int \frac {e^{21+x} \left (3 e^4-9 x+x^2-6 e^4 \log \left (-e^4+x\right )+6 x \log \left (-e^4+x\right )\right )}{\left (e^4-x\right ) \left (3-6 \log \left (-e^4+x\right )+x \log \left (-e^4+x\right )\right ) \left (3 e^{21+x}-5 \log \left (-e^4+x\right )-6 e^{21+x} \log \left (-e^4+x\right )+e^{21+x} x \log \left (-e^4+x\right )\right )} \, dx\\ &=5 \int \frac {e^{21+x} x \left (-3-3 \left (e^4-x\right ) \log \left (-e^4+x\right )-\left (e^4-x\right ) (-5+x) \log ^2\left (-e^4+x\right )\right )}{\left (e^4-x\right ) \left (3 e^{21+x}+\left (-5+e^{21+x} (-6+x)\right ) \log \left (-e^4+x\right )\right )^2 \left (3+(-6+x) \log \left (-e^4+x\right )\right )} \, dx+\int \frac {e^{21+x} \left (3 e^4+(-9+x) x-6 \left (e^4-x\right ) \log \left (-e^4+x\right )\right )}{\left (e^4-x\right ) \left (3 e^{21+x}+\left (-5+e^{21+x} (-6+x)\right ) \log \left (-e^4+x\right )\right ) \left (3+(-6+x) \log \left (-e^4+x\right )\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.15, size = 37, normalized size = 1.23 \begin {gather*} \frac {e^{21+x} x}{3 e^{21+x}+\left (-5+e^{21+x} (-6+x)\right ) \log \left (-e^4+x\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-5*E^(21 + x)*x + E^(42 + 2*x)*(3*E^4 - 9*x + x^2) + (E^(42 + 2*x)*(-6*E^4 + 6*x) + E^(21 + x)*(E^4
*(-5 - 5*x) + 5*x + 5*x^2))*Log[-E^4 + x])/(E^(42 + 2*x)*(9*E^4 - 9*x) + (E^(21 + x)*(-30*E^4 + 30*x) + E^(42
+ 2*x)*(36*x - 6*x^2 + E^4*(-36 + 6*x)))*Log[-E^4 + x] + (25*E^4 - 25*x + E^(21 + x)*(E^4*(60 - 10*x) - 60*x +
 10*x^2) + E^(42 + 2*x)*(-36*x + 12*x^2 - x^3 + E^4*(36 - 12*x + x^2)))*Log[-E^4 + x]^2),x]

[Out]

(E^(21 + x)*x)/(3*E^(21 + x) + (-5 + E^(21 + x)*(-6 + x))*Log[-E^4 + x])

________________________________________________________________________________________

fricas [A]  time = 1.20, size = 33, normalized size = 1.10 \begin {gather*} \frac {x e^{\left (x + 21\right )}}{{\left ({\left (x - 6\right )} e^{\left (x + 21\right )} - 5\right )} \log \left (x - e^{4}\right ) + 3 \, e^{\left (x + 21\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-6*exp(4)+6*x)*exp(x+21)^2+((-5*x-5)*exp(4)+5*x^2+5*x)*exp(x+21))*log(x-exp(4))+(3*exp(4)+x^2-9*x
)*exp(x+21)^2-5*x*exp(x+21))/((((x^2-12*x+36)*exp(4)-x^3+12*x^2-36*x)*exp(x+21)^2+((-10*x+60)*exp(4)+10*x^2-60
*x)*exp(x+21)+25*exp(4)-25*x)*log(x-exp(4))^2+(((6*x-36)*exp(4)-6*x^2+36*x)*exp(x+21)^2+(-30*exp(4)+30*x)*exp(
x+21))*log(x-exp(4))+(9*exp(4)-9*x)*exp(x+21)^2),x, algorithm="fricas")

[Out]

x*e^(x + 21)/(((x - 6)*e^(x + 21) - 5)*log(x - e^4) + 3*e^(x + 21))

________________________________________________________________________________________

giac [A]  time = 1.38, size = 50, normalized size = 1.67 \begin {gather*} \frac {x e^{\left (x + 21\right )}}{x e^{\left (x + 21\right )} \log \left (x - e^{4}\right ) - 6 \, e^{\left (x + 21\right )} \log \left (x - e^{4}\right ) + 3 \, e^{\left (x + 21\right )} - 5 \, \log \left (x - e^{4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-6*exp(4)+6*x)*exp(x+21)^2+((-5*x-5)*exp(4)+5*x^2+5*x)*exp(x+21))*log(x-exp(4))+(3*exp(4)+x^2-9*x
)*exp(x+21)^2-5*x*exp(x+21))/((((x^2-12*x+36)*exp(4)-x^3+12*x^2-36*x)*exp(x+21)^2+((-10*x+60)*exp(4)+10*x^2-60
*x)*exp(x+21)+25*exp(4)-25*x)*log(x-exp(4))^2+(((6*x-36)*exp(4)-6*x^2+36*x)*exp(x+21)^2+(-30*exp(4)+30*x)*exp(
x+21))*log(x-exp(4))+(9*exp(4)-9*x)*exp(x+21)^2),x, algorithm="giac")

[Out]

x*e^(x + 21)/(x*e^(x + 21)*log(x - e^4) - 6*e^(x + 21)*log(x - e^4) + 3*e^(x + 21) - 5*log(x - e^4))

________________________________________________________________________________________

maple [A]  time = 0.06, size = 51, normalized size = 1.70




method result size



risch \(\frac {{\mathrm e}^{x +21} x}{{\mathrm e}^{x +21} \ln \left (x -{\mathrm e}^{4}\right ) x -6 \,{\mathrm e}^{x +21} \ln \left (x -{\mathrm e}^{4}\right )+3 \,{\mathrm e}^{x +21}-5 \ln \left (x -{\mathrm e}^{4}\right )}\) \(51\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-6*exp(4)+6*x)*exp(x+21)^2+((-5*x-5)*exp(4)+5*x^2+5*x)*exp(x+21))*ln(x-exp(4))+(3*exp(4)+x^2-9*x)*exp(x
+21)^2-5*x*exp(x+21))/((((x^2-12*x+36)*exp(4)-x^3+12*x^2-36*x)*exp(x+21)^2+((-10*x+60)*exp(4)+10*x^2-60*x)*exp
(x+21)+25*exp(4)-25*x)*ln(x-exp(4))^2+(((6*x-36)*exp(4)-6*x^2+36*x)*exp(x+21)^2+(-30*exp(4)+30*x)*exp(x+21))*l
n(x-exp(4))+(9*exp(4)-9*x)*exp(x+21)^2),x,method=_RETURNVERBOSE)

[Out]

exp(x+21)*x/(exp(x+21)*ln(x-exp(4))*x-6*exp(x+21)*ln(x-exp(4))+3*exp(x+21)-5*ln(x-exp(4)))

________________________________________________________________________________________

maxima [A]  time = 0.54, size = 37, normalized size = 1.23 \begin {gather*} \frac {x e^{\left (x + 21\right )}}{{\left ({\left (x e^{21} - 6 \, e^{21}\right )} e^{x} - 5\right )} \log \left (x - e^{4}\right ) + 3 \, e^{\left (x + 21\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-6*exp(4)+6*x)*exp(x+21)^2+((-5*x-5)*exp(4)+5*x^2+5*x)*exp(x+21))*log(x-exp(4))+(3*exp(4)+x^2-9*x
)*exp(x+21)^2-5*x*exp(x+21))/((((x^2-12*x+36)*exp(4)-x^3+12*x^2-36*x)*exp(x+21)^2+((-10*x+60)*exp(4)+10*x^2-60
*x)*exp(x+21)+25*exp(4)-25*x)*log(x-exp(4))^2+(((6*x-36)*exp(4)-6*x^2+36*x)*exp(x+21)^2+(-30*exp(4)+30*x)*exp(
x+21))*log(x-exp(4))+(9*exp(4)-9*x)*exp(x+21)^2),x, algorithm="maxima")

[Out]

x*e^(x + 21)/(((x*e^21 - 6*e^21)*e^x - 5)*log(x - e^4) + 3*e^(x + 21))

________________________________________________________________________________________

mupad [B]  time = 4.74, size = 285, normalized size = 9.50 \begin {gather*} \frac {25\,x\,{\mathrm {e}}^{x+25}+60\,x\,{\mathrm {e}}^{2\,x+46}+15\,x\,{\mathrm {e}}^{2\,x+50}+36\,x\,{\mathrm {e}}^{3\,x+67}+3\,x\,{\mathrm {e}}^{3\,x+71}-25\,x^2\,{\mathrm {e}}^{x+21}-60\,x^2\,{\mathrm {e}}^{2\,x+42}+25\,x^3\,{\mathrm {e}}^{2\,x+42}-40\,x^2\,{\mathrm {e}}^{2\,x+46}-36\,x^2\,{\mathrm {e}}^{3\,x+63}+15\,x^3\,{\mathrm {e}}^{3\,x+63}-x^4\,{\mathrm {e}}^{3\,x+63}-18\,x^2\,{\mathrm {e}}^{3\,x+67}+x^3\,{\mathrm {e}}^{3\,x+67}}{\left (3\,{\mathrm {e}}^{x+21}-\ln \left (x-{\mathrm {e}}^4\right )\,\left (6\,{\mathrm {e}}^{x+21}-x\,{\mathrm {e}}^{x+21}+5\right )\right )\,\left (60\,{\mathrm {e}}^{x+25}-25\,x+15\,{\mathrm {e}}^{x+29}+25\,{\mathrm {e}}^4+36\,{\mathrm {e}}^{2\,x+46}+3\,{\mathrm {e}}^{2\,x+50}-60\,x\,{\mathrm {e}}^{x+21}-40\,x\,{\mathrm {e}}^{x+25}-36\,x\,{\mathrm {e}}^{2\,x+42}-18\,x\,{\mathrm {e}}^{2\,x+46}+25\,x^2\,{\mathrm {e}}^{x+21}+15\,x^2\,{\mathrm {e}}^{2\,x+42}-x^3\,{\mathrm {e}}^{2\,x+42}+x^2\,{\mathrm {e}}^{2\,x+46}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log(x - exp(4))*(exp(x + 21)*(5*x + 5*x^2 - exp(4)*(5*x + 5)) + exp(2*x + 42)*(6*x - 6*exp(4))) - 5*x*ex
p(x + 21) + exp(2*x + 42)*(3*exp(4) - 9*x + x^2))/(log(x - exp(4))^2*(25*x - 25*exp(4) + exp(x + 21)*(60*x - 1
0*x^2 + exp(4)*(10*x - 60)) + exp(2*x + 42)*(36*x - exp(4)*(x^2 - 12*x + 36) - 12*x^2 + x^3)) - log(x - exp(4)
)*(exp(2*x + 42)*(36*x - 6*x^2 + exp(4)*(6*x - 36)) + exp(x + 21)*(30*x - 30*exp(4))) + exp(2*x + 42)*(9*x - 9
*exp(4))),x)

[Out]

(25*x*exp(x + 25) + 60*x*exp(2*x + 46) + 15*x*exp(2*x + 50) + 36*x*exp(3*x + 67) + 3*x*exp(3*x + 71) - 25*x^2*
exp(x + 21) - 60*x^2*exp(2*x + 42) + 25*x^3*exp(2*x + 42) - 40*x^2*exp(2*x + 46) - 36*x^2*exp(3*x + 63) + 15*x
^3*exp(3*x + 63) - x^4*exp(3*x + 63) - 18*x^2*exp(3*x + 67) + x^3*exp(3*x + 67))/((3*exp(x + 21) - log(x - exp
(4))*(6*exp(x + 21) - x*exp(x + 21) + 5))*(60*exp(x + 25) - 25*x + 15*exp(x + 29) + 25*exp(4) + 36*exp(2*x + 4
6) + 3*exp(2*x + 50) - 60*x*exp(x + 21) - 40*x*exp(x + 25) - 36*x*exp(2*x + 42) - 18*x*exp(2*x + 46) + 25*x^2*
exp(x + 21) + 15*x^2*exp(2*x + 42) - x^3*exp(2*x + 42) + x^2*exp(2*x + 46)))

________________________________________________________________________________________

sympy [B]  time = 1.10, size = 112, normalized size = 3.73 \begin {gather*} \frac {5 x \log {\left (x - e^{4} \right )}}{- 5 x \log {\left (x - e^{4} \right )}^{2} + \left (x^{2} \log {\left (x - e^{4} \right )}^{2} - 12 x \log {\left (x - e^{4} \right )}^{2} + 6 x \log {\left (x - e^{4} \right )} + 36 \log {\left (x - e^{4} \right )}^{2} - 36 \log {\left (x - e^{4} \right )} + 9\right ) e^{x + 21} + 30 \log {\left (x - e^{4} \right )}^{2} - 15 \log {\left (x - e^{4} \right )}} + \frac {x}{\left (x - 6\right ) \log {\left (x - e^{4} \right )} + 3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-6*exp(4)+6*x)*exp(x+21)**2+((-5*x-5)*exp(4)+5*x**2+5*x)*exp(x+21))*ln(x-exp(4))+(3*exp(4)+x**2-9
*x)*exp(x+21)**2-5*x*exp(x+21))/((((x**2-12*x+36)*exp(4)-x**3+12*x**2-36*x)*exp(x+21)**2+((-10*x+60)*exp(4)+10
*x**2-60*x)*exp(x+21)+25*exp(4)-25*x)*ln(x-exp(4))**2+(((6*x-36)*exp(4)-6*x**2+36*x)*exp(x+21)**2+(-30*exp(4)+
30*x)*exp(x+21))*ln(x-exp(4))+(9*exp(4)-9*x)*exp(x+21)**2),x)

[Out]

5*x*log(x - exp(4))/(-5*x*log(x - exp(4))**2 + (x**2*log(x - exp(4))**2 - 12*x*log(x - exp(4))**2 + 6*x*log(x
- exp(4)) + 36*log(x - exp(4))**2 - 36*log(x - exp(4)) + 9)*exp(x + 21) + 30*log(x - exp(4))**2 - 15*log(x - e
xp(4))) + x/((x - 6)*log(x - exp(4)) + 3)

________________________________________________________________________________________