Optimal. Leaf size=31 \[ \frac {5+(3-x) (-4+x)-x}{\log \left (\frac {2 (1+x+x (4+x))}{x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.59, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-7+6 x+6 x^2-6 x^3+x^4+\left (6 x+28 x^2-4 x^3-2 x^4\right ) \log \left (\frac {2+10 x+2 x^2}{x}\right )}{\left (x+5 x^2+x^3\right ) \log ^2\left (\frac {2+10 x+2 x^2}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-7+6 x+6 x^2-6 x^3+x^4+\left (6 x+28 x^2-4 x^3-2 x^4\right ) \log \left (\frac {2+10 x+2 x^2}{x}\right )}{x \left (1+5 x+x^2\right ) \log ^2\left (\frac {2+10 x+2 x^2}{x}\right )} \, dx\\ &=\int \left (\frac {-7+6 x+6 x^2-6 x^3+x^4}{x \left (1+5 x+x^2\right ) \log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )}-\frac {2 (-3+x)}{\log \left (2 \left (5+\frac {1}{x}+x\right )\right )}\right ) \, dx\\ &=-\left (2 \int \frac {-3+x}{\log \left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx\right )+\int \frac {-7+6 x+6 x^2-6 x^3+x^4}{x \left (1+5 x+x^2\right ) \log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx\\ &=-\left (2 \int \left (-\frac {3}{\log \left (2 \left (5+\frac {1}{x}+x\right )\right )}+\frac {x}{\log \left (2 \left (5+\frac {1}{x}+x\right )\right )}\right ) \, dx\right )+\int \left (-\frac {11}{\log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )}-\frac {7}{x \log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )}+\frac {x}{\log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )}+\frac {52+67 x}{\left (1+5 x+x^2\right ) \log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )}\right ) \, dx\\ &=-\left (2 \int \frac {x}{\log \left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx\right )+6 \int \frac {1}{\log \left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx-7 \int \frac {1}{x \log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx-11 \int \frac {1}{\log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx+\int \frac {x}{\log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx+\int \frac {52+67 x}{\left (1+5 x+x^2\right ) \log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx\\ &=-\left (2 \int \frac {x}{\log \left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx\right )+6 \int \frac {1}{\log \left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx-7 \int \frac {1}{x \log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx-11 \int \frac {1}{\log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx+\int \left (\frac {52}{\left (1+5 x+x^2\right ) \log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )}+\frac {67 x}{\left (1+5 x+x^2\right ) \log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )}\right ) \, dx+\int \frac {x}{\log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx\\ &=-\left (2 \int \frac {x}{\log \left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx\right )+6 \int \frac {1}{\log \left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx-7 \int \frac {1}{x \log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx-11 \int \frac {1}{\log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx+52 \int \frac {1}{\left (1+5 x+x^2\right ) \log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx+67 \int \frac {x}{\left (1+5 x+x^2\right ) \log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx+\int \frac {x}{\log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx\\ &=-\left (2 \int \frac {x}{\log \left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx\right )+6 \int \frac {1}{\log \left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx-7 \int \frac {1}{x \log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx-11 \int \frac {1}{\log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx+52 \int \left (-\frac {2}{\sqrt {21} \left (-5+\sqrt {21}-2 x\right ) \log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )}-\frac {2}{\sqrt {21} \left (5+\sqrt {21}+2 x\right ) \log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )}\right ) \, dx+67 \int \left (\frac {1-\frac {5}{\sqrt {21}}}{\left (5-\sqrt {21}+2 x\right ) \log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )}+\frac {1+\frac {5}{\sqrt {21}}}{\left (5+\sqrt {21}+2 x\right ) \log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )}\right ) \, dx+\int \frac {x}{\log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx\\ &=-\left (2 \int \frac {x}{\log \left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx\right )+6 \int \frac {1}{\log \left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx-7 \int \frac {1}{x \log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx-11 \int \frac {1}{\log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx-\frac {104 \int \frac {1}{\left (-5+\sqrt {21}-2 x\right ) \log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx}{\sqrt {21}}-\frac {104 \int \frac {1}{\left (5+\sqrt {21}+2 x\right ) \log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx}{\sqrt {21}}+\frac {1}{21} \left (67 \left (21-5 \sqrt {21}\right )\right ) \int \frac {1}{\left (5-\sqrt {21}+2 x\right ) \log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx+\frac {1}{21} \left (67 \left (21+5 \sqrt {21}\right )\right ) \int \frac {1}{\left (5+\sqrt {21}+2 x\right ) \log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx+\int \frac {x}{\log ^2\left (2 \left (5+\frac {1}{x}+x\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.49, size = 22, normalized size = 0.71 \begin {gather*} \frac {-7+6 x-x^2}{\log \left (2 \left (5+\frac {1}{x}+x\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 26, normalized size = 0.84 \begin {gather*} -\frac {x^{2} - 6 \, x + 7}{\log \left (\frac {2 \, {\left (x^{2} + 5 \, x + 1\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 26, normalized size = 0.84 \begin {gather*} -\frac {x^{2} - 6 \, x + 7}{\log \left (\frac {2 \, {\left (x^{2} + 5 \, x + 1\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 28, normalized size = 0.90
method | result | size |
risch | \(-\frac {x^{2}-6 x +7}{\ln \left (\frac {2 x^{2}+10 x +2}{x}\right )}\) | \(28\) |
norman | \(\frac {-x^{2}+6 x -7}{\ln \left (\frac {2 x^{2}+10 x +2}{x}\right )}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 28, normalized size = 0.90 \begin {gather*} -\frac {x^{2} - 6 \, x + 7}{\log \relax (2) + \log \left (x^{2} + 5 \, x + 1\right ) - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.68, size = 27, normalized size = 0.87 \begin {gather*} -\frac {x^2-6\,x+7}{\ln \left (\frac {2\,x^2+10\,x+2}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 20, normalized size = 0.65 \begin {gather*} \frac {- x^{2} + 6 x - 7}{\log {\left (\frac {2 x^{2} + 10 x + 2}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________