Optimal. Leaf size=19 \[ -1+x+\frac {27 x^3}{\left (5+e^x\right ) \log ^2(x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-270 x^2-54 e^x x^2+\left (405 x^2+e^x \left (81 x^2-27 x^3\right )\right ) \log (x)+\left (25+10 e^x+e^{2 x}\right ) \log ^3(x)}{\left (25+10 e^x+e^{2 x}\right ) \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1-\frac {54 x^2}{\left (5+e^x\right ) \log ^3(x)}-\frac {27 \left (-15+e^x (-3+x)\right ) x^2}{\left (5+e^x\right )^2 \log ^2(x)}\right ) \, dx\\ &=x-27 \int \frac {\left (-15+e^x (-3+x)\right ) x^2}{\left (5+e^x\right )^2 \log ^2(x)} \, dx-54 \int \frac {x^2}{\left (5+e^x\right ) \log ^3(x)} \, dx\\ &=x-27 \int \left (\frac {(-3+x) x^2}{\left (5+e^x\right ) \log ^2(x)}-\frac {5 x^3}{\left (5+e^x\right )^2 \log ^2(x)}\right ) \, dx-54 \int \frac {x^2}{\left (5+e^x\right ) \log ^3(x)} \, dx\\ &=x-27 \int \frac {(-3+x) x^2}{\left (5+e^x\right ) \log ^2(x)} \, dx-54 \int \frac {x^2}{\left (5+e^x\right ) \log ^3(x)} \, dx+135 \int \frac {x^3}{\left (5+e^x\right )^2 \log ^2(x)} \, dx\\ &=x-27 \int \left (-\frac {3 x^2}{\left (5+e^x\right ) \log ^2(x)}+\frac {x^3}{\left (5+e^x\right ) \log ^2(x)}\right ) \, dx-54 \int \frac {x^2}{\left (5+e^x\right ) \log ^3(x)} \, dx+135 \int \frac {x^3}{\left (5+e^x\right )^2 \log ^2(x)} \, dx\\ &=x-27 \int \frac {x^3}{\left (5+e^x\right ) \log ^2(x)} \, dx-54 \int \frac {x^2}{\left (5+e^x\right ) \log ^3(x)} \, dx+81 \int \frac {x^2}{\left (5+e^x\right ) \log ^2(x)} \, dx+135 \int \frac {x^3}{\left (5+e^x\right )^2 \log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.37, size = 18, normalized size = 0.95 \begin {gather*} x+\frac {27 x^3}{\left (5+e^x\right ) \log ^2(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 30, normalized size = 1.58 \begin {gather*} \frac {27 \, x^{3} + {\left (x e^{x} + 5 \, x\right )} \log \relax (x)^{2}}{{\left (e^{x} + 5\right )} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.42, size = 38, normalized size = 2.00 \begin {gather*} \frac {x e^{x} \log \relax (x)^{2} + 27 \, x^{3} + 5 \, x \log \relax (x)^{2}}{e^{x} \log \relax (x)^{2} + 5 \, \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 0.95
method | result | size |
risch | \(x +\frac {27 x^{3}}{\ln \relax (x )^{2} \left ({\mathrm e}^{x}+5\right )}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 38, normalized size = 2.00 \begin {gather*} \frac {x e^{x} \log \relax (x)^{2} + 27 \, x^{3} + 5 \, x \log \relax (x)^{2}}{e^{x} \log \relax (x)^{2} + 5 \, \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.43, size = 212, normalized size = 11.16 \begin {gather*} x+\frac {675\,x^5}{15\,{\mathrm {e}}^{2\,x}+{\mathrm {e}}^{3\,x}+75\,{\mathrm {e}}^x+125}+\frac {\frac {945\,x^4}{2}-\frac {405\,x^5}{2}}{{\mathrm {e}}^{2\,x}+10\,{\mathrm {e}}^x+25}+\frac {\frac {27\,x\,\left (3\,x^2\,{\mathrm {e}}^x-x^3\,{\mathrm {e}}^x+15\,x^2\right )}{2\,{\left ({\mathrm {e}}^x+5\right )}^2}-\frac {27\,x\,\ln \relax (x)\,\left (90\,x^2\,{\mathrm {e}}^x-35\,x^3\,{\mathrm {e}}^x-5\,x^4\,{\mathrm {e}}^x+9\,x^2\,{\mathrm {e}}^{2\,x}-7\,x^3\,{\mathrm {e}}^{2\,x}+x^4\,{\mathrm {e}}^{2\,x}+225\,x^2\right )}{2\,{\left ({\mathrm {e}}^x+5\right )}^3}}{\ln \relax (x)}+\frac {\frac {27\,x^3}{{\mathrm {e}}^x+5}-\frac {27\,x^3\,\ln \relax (x)\,\left (3\,{\mathrm {e}}^x-x\,{\mathrm {e}}^x+15\right )}{2\,{\left ({\mathrm {e}}^x+5\right )}^2}}{{\ln \relax (x)}^2}+\frac {\frac {27\,x^5}{2}-\frac {189\,x^4}{2}+\frac {243\,x^3}{2}}{{\mathrm {e}}^x+5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 20, normalized size = 1.05 \begin {gather*} \frac {27 x^{3}}{e^{x} \log {\relax (x )}^{2} + 5 \log {\relax (x )}^{2}} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________