Optimal. Leaf size=21 \[ e^{x+\left (6+\frac {5}{12} \left (x+\frac {\log (5)}{4}\right )\right ) \log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {1}{48} (48 x+(288+20 x+5 \log (5)) \log (x))\right ) (288+68 x+5 \log (5)+20 x \log (x))}{48 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{48} \int \frac {\exp \left (\frac {1}{48} (48 x+(288+20 x+5 \log (5)) \log (x))\right ) (288+68 x+5 \log (5)+20 x \log (x))}{x} \, dx\\ &=\frac {1}{48} \int \frac {\exp \left (\frac {1}{48} (48 x+(288+20 x+5 \log (5)) \log (x))\right ) \left (68 x+288 \left (1+\frac {5 \log (5)}{288}\right )+20 x \log (x)\right )}{x} \, dx\\ &=\frac {1}{48} \int \left (\frac {\exp \left (\frac {1}{48} (48 x+(288+20 x+5 \log (5)) \log (x))\right ) (288+68 x+5 \log (5))}{x}+20 \exp \left (\frac {1}{48} (48 x+(288+20 x+5 \log (5)) \log (x))\right ) \log (x)\right ) \, dx\\ &=\frac {1}{48} \int \frac {\exp \left (\frac {1}{48} (48 x+(288+20 x+5 \log (5)) \log (x))\right ) (288+68 x+5 \log (5))}{x} \, dx+\frac {5}{12} \int \exp \left (\frac {1}{48} (48 x+(288+20 x+5 \log (5)) \log (x))\right ) \log (x) \, dx\\ &=\frac {1}{48} \int \left (68 \exp \left (\frac {1}{48} (48 x+(288+20 x+5 \log (5)) \log (x))\right )+\frac {\exp \left (\frac {1}{48} (48 x+(288+20 x+5 \log (5)) \log (x))\right ) (288+5 \log (5))}{x}\right ) \, dx+\frac {5}{12} \int \exp \left (\frac {1}{48} (48 x+(288+20 x+5 \log (5)) \log (x))\right ) \log (x) \, dx\\ &=\frac {5}{12} \int \exp \left (\frac {1}{48} (48 x+(288+20 x+5 \log (5)) \log (x))\right ) \log (x) \, dx+\frac {17}{12} \int \exp \left (\frac {1}{48} (48 x+(288+20 x+5 \log (5)) \log (x))\right ) \, dx+\frac {1}{48} (288+5 \log (5)) \int \frac {\exp \left (\frac {1}{48} (48 x+(288+20 x+5 \log (5)) \log (x))\right )}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.35, size = 19, normalized size = 0.90 \begin {gather*} e^x x^{1+\frac {5}{48} (48+4 x+\log (5))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.59, size = 16, normalized size = 0.76 \begin {gather*} e^{\left (\frac {1}{48} \, {\left (20 \, x + 5 \, \log \relax (5) + 288\right )} \log \relax (x) + x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 18, normalized size = 0.86 \begin {gather*} e^{\left (\frac {5}{12} \, x \log \relax (x) + \frac {5}{48} \, \log \relax (5) \log \relax (x) + x + 6 \, \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 15, normalized size = 0.71
method | result | size |
risch | \(x^{6+\frac {5 x}{12}+\frac {5 \ln \relax (5)}{48}} {\mathrm e}^{x}\) | \(15\) |
norman | \({\mathrm e}^{\frac {\left (5 \ln \relax (5)+20 x +288\right ) \ln \relax (x )}{48}+x}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 18, normalized size = 0.86 \begin {gather*} x^{6} e^{\left (\frac {5}{12} \, x \log \relax (x) + \frac {5}{48} \, \log \relax (5) \log \relax (x) + x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.30, size = 17, normalized size = 0.81 \begin {gather*} x^{\frac {5\,x}{12}+6}\,{\mathrm {e}}^{x+\frac {5\,\ln \relax (5)\,\ln \relax (x)}{48}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 19, normalized size = 0.90 \begin {gather*} e^{x + \left (\frac {5 x}{12} + \frac {5 \log {\relax (5 )}}{48} + 6\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________