Optimal. Leaf size=33 \[ \frac {2}{x \left (4+e^x+e^{\left (-e^x+x\right ) \left (6-x-x^2\right )}+x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [A] time = 0.51, size = 56, normalized size = 1.70 \begin {gather*} \frac {2 e^{x^2+x^3}}{x \left (e^{x+x^2+x^3}+e^{6 x+e^x \left (-6+x+x^2\right )}+e^{x^2+x^3} (4+x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 41, normalized size = 1.24 \begin {gather*} \frac {2}{x^{2} + x e^{\left (-x^{3} - x^{2} + {\left (x^{2} + x - 6\right )} e^{x} + 6 \, x\right )} + x e^{x} + 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.78, size = 46, normalized size = 1.39 \begin {gather*} \frac {2}{x^{2} + x e^{\left (-x^{3} + x^{2} e^{x} - x^{2} + x e^{x} + 6 \, x - 6 \, e^{x}\right )} + x e^{x} + 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 27, normalized size = 0.82
method | result | size |
risch | \(\frac {2}{x \left (x +{\mathrm e}^{x}+{\mathrm e}^{\left (3+x \right ) \left (x -2\right ) \left ({\mathrm e}^{x}-x \right )}+4\right )}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.58, size = 58, normalized size = 1.76 \begin {gather*} \frac {2 \, e^{\left (x^{3} + x^{2} + 6 \, e^{x}\right )}}{{\left (x^{2} + x e^{x} + 4 \, x\right )} e^{\left (x^{3} + x^{2} + 6 \, e^{x}\right )} + x e^{\left (x^{2} e^{x} + x e^{x} + 6 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.31, size = 163, normalized size = 4.94 \begin {gather*} \frac {{\mathrm {e}}^x\,\left (2\,x^4+8\,x^3+10\,x^2-30\,x\right )+x^2\,\left (6\,{\mathrm {e}}^{2\,x}-4\right )+x^3\,\left (2\,{\mathrm {e}}^{2\,x}-28\right )-x\,\left (10\,{\mathrm {e}}^{2\,x}-46\right )-6\,x^4}{x^2\,\left (x+{\mathrm {e}}^{6\,x-6\,{\mathrm {e}}^x+x^2\,{\mathrm {e}}^x+x\,{\mathrm {e}}^x-x^2-x^3}+{\mathrm {e}}^x+4\right )\,\left (3\,x\,{\mathrm {e}}^{2\,x}-5\,{\mathrm {e}}^{2\,x}-15\,{\mathrm {e}}^x-2\,x+4\,x^2\,{\mathrm {e}}^x+x^3\,{\mathrm {e}}^x+x^2\,{\mathrm {e}}^{2\,x}+5\,x\,{\mathrm {e}}^x-14\,x^2-3\,x^3+23\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 36, normalized size = 1.09 \begin {gather*} \frac {2}{x^{2} + x e^{x} + x e^{- x^{3} - x^{2} + 6 x + \left (x^{2} + x - 6\right ) e^{x}} + 4 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________