3.71.78 \(\int \frac {-8+e^x (-2-2 x)-4 x+e^{6 x-x^2-x^3+e^x (-6+x+x^2)} (-2-12 x+4 x^2+6 x^3+e^x (10 x-6 x^2-2 x^3))}{16 x^2+e^{2 x} x^2+e^{12 x-2 x^2-2 x^3+2 e^x (-6+x+x^2)} x^2+8 x^3+x^4+e^x (8 x^2+2 x^3)+e^{6 x-x^2-x^3+e^x (-6+x+x^2)} (8 x^2+2 e^x x^2+2 x^3)} \, dx\)

Optimal. Leaf size=33 \[ \frac {2}{x \left (4+e^x+e^{\left (-e^x+x\right ) \left (6-x-x^2\right )}+x\right )} \]

________________________________________________________________________________________

Rubi [F]  time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}

Verification is not applicable to the result.

[In]

Int[(-8 + E^x*(-2 - 2*x) - 4*x + E^(6*x - x^2 - x^3 + E^x*(-6 + x + x^2))*(-2 - 12*x + 4*x^2 + 6*x^3 + E^x*(10
*x - 6*x^2 - 2*x^3)))/(16*x^2 + E^(2*x)*x^2 + E^(12*x - 2*x^2 - 2*x^3 + 2*E^x*(-6 + x + x^2))*x^2 + 8*x^3 + x^
4 + E^x*(8*x^2 + 2*x^3) + E^(6*x - x^2 - x^3 + E^x*(-6 + x + x^2))*(8*x^2 + 2*E^x*x^2 + 2*x^3)),x]

[Out]

$Aborted

Rubi steps

Aborted

________________________________________________________________________________________

Mathematica [A]  time = 0.51, size = 56, normalized size = 1.70 \begin {gather*} \frac {2 e^{x^2+x^3}}{x \left (e^{x+x^2+x^3}+e^{6 x+e^x \left (-6+x+x^2\right )}+e^{x^2+x^3} (4+x)\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-8 + E^x*(-2 - 2*x) - 4*x + E^(6*x - x^2 - x^3 + E^x*(-6 + x + x^2))*(-2 - 12*x + 4*x^2 + 6*x^3 + E
^x*(10*x - 6*x^2 - 2*x^3)))/(16*x^2 + E^(2*x)*x^2 + E^(12*x - 2*x^2 - 2*x^3 + 2*E^x*(-6 + x + x^2))*x^2 + 8*x^
3 + x^4 + E^x*(8*x^2 + 2*x^3) + E^(6*x - x^2 - x^3 + E^x*(-6 + x + x^2))*(8*x^2 + 2*E^x*x^2 + 2*x^3)),x]

[Out]

(2*E^(x^2 + x^3))/(x*(E^(x + x^2 + x^3) + E^(6*x + E^x*(-6 + x + x^2)) + E^(x^2 + x^3)*(4 + x)))

________________________________________________________________________________________

fricas [A]  time = 0.59, size = 41, normalized size = 1.24 \begin {gather*} \frac {2}{x^{2} + x e^{\left (-x^{3} - x^{2} + {\left (x^{2} + x - 6\right )} e^{x} + 6 \, x\right )} + x e^{x} + 4 \, x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-2*x^3-6*x^2+10*x)*exp(x)+6*x^3+4*x^2-12*x-2)*exp((x^2+x-6)*exp(x)-x^3-x^2+6*x)+(-2*x-2)*exp(x)-4
*x-8)/(x^2*exp((x^2+x-6)*exp(x)-x^3-x^2+6*x)^2+(2*exp(x)*x^2+2*x^3+8*x^2)*exp((x^2+x-6)*exp(x)-x^3-x^2+6*x)+ex
p(x)^2*x^2+(2*x^3+8*x^2)*exp(x)+x^4+8*x^3+16*x^2),x, algorithm="fricas")

[Out]

2/(x^2 + x*e^(-x^3 - x^2 + (x^2 + x - 6)*e^x + 6*x) + x*e^x + 4*x)

________________________________________________________________________________________

giac [A]  time = 0.78, size = 46, normalized size = 1.39 \begin {gather*} \frac {2}{x^{2} + x e^{\left (-x^{3} + x^{2} e^{x} - x^{2} + x e^{x} + 6 \, x - 6 \, e^{x}\right )} + x e^{x} + 4 \, x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-2*x^3-6*x^2+10*x)*exp(x)+6*x^3+4*x^2-12*x-2)*exp((x^2+x-6)*exp(x)-x^3-x^2+6*x)+(-2*x-2)*exp(x)-4
*x-8)/(x^2*exp((x^2+x-6)*exp(x)-x^3-x^2+6*x)^2+(2*exp(x)*x^2+2*x^3+8*x^2)*exp((x^2+x-6)*exp(x)-x^3-x^2+6*x)+ex
p(x)^2*x^2+(2*x^3+8*x^2)*exp(x)+x^4+8*x^3+16*x^2),x, algorithm="giac")

[Out]

2/(x^2 + x*e^(-x^3 + x^2*e^x - x^2 + x*e^x + 6*x - 6*e^x) + x*e^x + 4*x)

________________________________________________________________________________________

maple [A]  time = 0.08, size = 27, normalized size = 0.82




method result size



risch \(\frac {2}{x \left (x +{\mathrm e}^{x}+{\mathrm e}^{\left (3+x \right ) \left (x -2\right ) \left ({\mathrm e}^{x}-x \right )}+4\right )}\) \(27\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-2*x^3-6*x^2+10*x)*exp(x)+6*x^3+4*x^2-12*x-2)*exp((x^2+x-6)*exp(x)-x^3-x^2+6*x)+(-2*x-2)*exp(x)-4*x-8)/
(x^2*exp((x^2+x-6)*exp(x)-x^3-x^2+6*x)^2+(2*exp(x)*x^2+2*x^3+8*x^2)*exp((x^2+x-6)*exp(x)-x^3-x^2+6*x)+exp(x)^2
*x^2+(2*x^3+8*x^2)*exp(x)+x^4+8*x^3+16*x^2),x,method=_RETURNVERBOSE)

[Out]

2/x/(x+exp(x)+exp((3+x)*(x-2)*(exp(x)-x))+4)

________________________________________________________________________________________

maxima [B]  time = 0.58, size = 58, normalized size = 1.76 \begin {gather*} \frac {2 \, e^{\left (x^{3} + x^{2} + 6 \, e^{x}\right )}}{{\left (x^{2} + x e^{x} + 4 \, x\right )} e^{\left (x^{3} + x^{2} + 6 \, e^{x}\right )} + x e^{\left (x^{2} e^{x} + x e^{x} + 6 \, x\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-2*x^3-6*x^2+10*x)*exp(x)+6*x^3+4*x^2-12*x-2)*exp((x^2+x-6)*exp(x)-x^3-x^2+6*x)+(-2*x-2)*exp(x)-4
*x-8)/(x^2*exp((x^2+x-6)*exp(x)-x^3-x^2+6*x)^2+(2*exp(x)*x^2+2*x^3+8*x^2)*exp((x^2+x-6)*exp(x)-x^3-x^2+6*x)+ex
p(x)^2*x^2+(2*x^3+8*x^2)*exp(x)+x^4+8*x^3+16*x^2),x, algorithm="maxima")

[Out]

2*e^(x^3 + x^2 + 6*e^x)/((x^2 + x*e^x + 4*x)*e^(x^3 + x^2 + 6*e^x) + x*e^(x^2*e^x + x*e^x + 6*x))

________________________________________________________________________________________

mupad [B]  time = 4.31, size = 163, normalized size = 4.94 \begin {gather*} \frac {{\mathrm {e}}^x\,\left (2\,x^4+8\,x^3+10\,x^2-30\,x\right )+x^2\,\left (6\,{\mathrm {e}}^{2\,x}-4\right )+x^3\,\left (2\,{\mathrm {e}}^{2\,x}-28\right )-x\,\left (10\,{\mathrm {e}}^{2\,x}-46\right )-6\,x^4}{x^2\,\left (x+{\mathrm {e}}^{6\,x-6\,{\mathrm {e}}^x+x^2\,{\mathrm {e}}^x+x\,{\mathrm {e}}^x-x^2-x^3}+{\mathrm {e}}^x+4\right )\,\left (3\,x\,{\mathrm {e}}^{2\,x}-5\,{\mathrm {e}}^{2\,x}-15\,{\mathrm {e}}^x-2\,x+4\,x^2\,{\mathrm {e}}^x+x^3\,{\mathrm {e}}^x+x^2\,{\mathrm {e}}^{2\,x}+5\,x\,{\mathrm {e}}^x-14\,x^2-3\,x^3+23\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(4*x + exp(x)*(2*x + 2) + exp(6*x - x^2 - x^3 + exp(x)*(x + x^2 - 6))*(12*x - 4*x^2 - 6*x^3 + exp(x)*(6*x
^2 - 10*x + 2*x^3) + 2) + 8)/(exp(x)*(8*x^2 + 2*x^3) + x^2*exp(12*x - 2*x^2 - 2*x^3 + 2*exp(x)*(x + x^2 - 6))
+ exp(6*x - x^2 - x^3 + exp(x)*(x + x^2 - 6))*(2*x^2*exp(x) + 8*x^2 + 2*x^3) + x^2*exp(2*x) + 16*x^2 + 8*x^3 +
 x^4),x)

[Out]

(exp(x)*(10*x^2 - 30*x + 8*x^3 + 2*x^4) + x^2*(6*exp(2*x) - 4) + x^3*(2*exp(2*x) - 28) - x*(10*exp(2*x) - 46)
- 6*x^4)/(x^2*(x + exp(6*x - 6*exp(x) + x^2*exp(x) + x*exp(x) - x^2 - x^3) + exp(x) + 4)*(3*x*exp(2*x) - 5*exp
(2*x) - 15*exp(x) - 2*x + 4*x^2*exp(x) + x^3*exp(x) + x^2*exp(2*x) + 5*x*exp(x) - 14*x^2 - 3*x^3 + 23))

________________________________________________________________________________________

sympy [A]  time = 0.45, size = 36, normalized size = 1.09 \begin {gather*} \frac {2}{x^{2} + x e^{x} + x e^{- x^{3} - x^{2} + 6 x + \left (x^{2} + x - 6\right ) e^{x}} + 4 x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-2*x**3-6*x**2+10*x)*exp(x)+6*x**3+4*x**2-12*x-2)*exp((x**2+x-6)*exp(x)-x**3-x**2+6*x)+(-2*x-2)*e
xp(x)-4*x-8)/(x**2*exp((x**2+x-6)*exp(x)-x**3-x**2+6*x)**2+(2*exp(x)*x**2+2*x**3+8*x**2)*exp((x**2+x-6)*exp(x)
-x**3-x**2+6*x)+exp(x)**2*x**2+(2*x**3+8*x**2)*exp(x)+x**4+8*x**3+16*x**2),x)

[Out]

2/(x**2 + x*exp(x) + x*exp(-x**3 - x**2 + 6*x + (x**2 + x - 6)*exp(x)) + 4*x)

________________________________________________________________________________________