Optimal. Leaf size=20 \[ \frac {2 x \left (-3+\frac {x}{3}+5 e^x x\right )}{\log (x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.31, antiderivative size = 27, normalized size of antiderivative = 1.35, number of steps used = 18, number of rules used = 8, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {12, 6742, 2288, 2320, 2330, 2298, 2309, 2178} \begin {gather*} \frac {10 e^x x^2}{\log (x)}-\frac {2 (9-x) x}{3 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2288
Rule 2298
Rule 2309
Rule 2320
Rule 2330
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {18-2 x-30 e^x x+\left (-18+4 x+e^x \left (60 x+30 x^2\right )\right ) \log (x)}{\log ^2(x)} \, dx\\ &=\frac {1}{3} \int \left (\frac {30 e^x x (-1+2 \log (x)+x \log (x))}{\log ^2(x)}+\frac {2 (9-x-9 \log (x)+2 x \log (x))}{\log ^2(x)}\right ) \, dx\\ &=\frac {2}{3} \int \frac {9-x-9 \log (x)+2 x \log (x)}{\log ^2(x)} \, dx+10 \int \frac {e^x x (-1+2 \log (x)+x \log (x))}{\log ^2(x)} \, dx\\ &=\frac {10 e^x x^2}{\log (x)}+\frac {2}{3} \int \left (\frac {9-x}{\log ^2(x)}+\frac {-9+2 x}{\log (x)}\right ) \, dx\\ &=\frac {10 e^x x^2}{\log (x)}+\frac {2}{3} \int \frac {9-x}{\log ^2(x)} \, dx+\frac {2}{3} \int \frac {-9+2 x}{\log (x)} \, dx\\ &=-\frac {2 (9-x) x}{3 \log (x)}+\frac {10 e^x x^2}{\log (x)}+\frac {2}{3} \int \left (-\frac {9}{\log (x)}+\frac {2 x}{\log (x)}\right ) \, dx+\frac {4}{3} \int \frac {9-x}{\log (x)} \, dx-6 \int \frac {1}{\log (x)} \, dx\\ &=-\frac {2 (9-x) x}{3 \log (x)}+\frac {10 e^x x^2}{\log (x)}-6 \text {li}(x)+\frac {4}{3} \int \left (\frac {9}{\log (x)}-\frac {x}{\log (x)}\right ) \, dx+\frac {4}{3} \int \frac {x}{\log (x)} \, dx-6 \int \frac {1}{\log (x)} \, dx\\ &=-\frac {2 (9-x) x}{3 \log (x)}+\frac {10 e^x x^2}{\log (x)}-12 \text {li}(x)-\frac {4}{3} \int \frac {x}{\log (x)} \, dx+\frac {4}{3} \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )+12 \int \frac {1}{\log (x)} \, dx\\ &=\frac {4}{3} \text {Ei}(2 \log (x))-\frac {2 (9-x) x}{3 \log (x)}+\frac {10 e^x x^2}{\log (x)}-\frac {4}{3} \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=-\frac {2 (9-x) x}{3 \log (x)}+\frac {10 e^x x^2}{\log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 18, normalized size = 0.90 \begin {gather*} \frac {2 x \left (-9+x+15 e^x x\right )}{3 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.06, size = 20, normalized size = 1.00 \begin {gather*} \frac {2 \, {\left (15 \, x^{2} e^{x} + x^{2} - 9 \, x\right )}}{3 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 20, normalized size = 1.00 \begin {gather*} \frac {2 \, {\left (15 \, x^{2} e^{x} + x^{2} - 9 \, x\right )}}{3 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 16, normalized size = 0.80
method | result | size |
risch | \(\frac {2 x \left (15 \,{\mathrm e}^{x} x +x -9\right )}{3 \ln \relax (x )}\) | \(16\) |
norman | \(\frac {-6 x +\frac {2 x^{2}}{3}+10 \,{\mathrm e}^{x} x^{2}}{\ln \relax (x )}\) | \(22\) |
default | \(\frac {2 x^{2}}{3 \ln \relax (x )}-\frac {6 x}{\ln \relax (x )}+\frac {10 \,{\mathrm e}^{x} x^{2}}{\ln \relax (x )}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {10 \, x^{2} e^{x}}{\log \relax (x)} + 6 \, \Gamma \left (-1, -\log \relax (x)\right ) - \frac {4}{3} \, \Gamma \left (-1, -2 \, \log \relax (x)\right ) + \frac {2}{3} \, \int \frac {2 \, x - 9}{\log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.19, size = 15, normalized size = 0.75 \begin {gather*} \frac {2\,x\,\left (x+15\,x\,{\mathrm {e}}^x-9\right )}{3\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 24, normalized size = 1.20 \begin {gather*} \frac {10 x^{2} e^{x}}{\log {\relax (x )}} + \frac {2 x^{2} - 18 x}{3 \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________