Optimal. Leaf size=30 \[ 25+\left (e^{\frac {e^{\frac {x}{e}}}{4}}+x\right ) (-5 x \log (4)+\log (4-x)) \]
________________________________________________________________________________________
Rubi [F] time = 1.63, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 e x+e \left (160 x-40 x^2\right ) \log (4)+e (-16+4 x) \log (4-x)+e^{\frac {e^{\frac {x}{e}}}{4}} \left (4 e+e (80-20 x) \log (4)+e^{\frac {x}{e}} \left (20 x-5 x^2\right ) \log (4)+e^{\frac {x}{e}} (-4+x) \log (4-x)\right )}{e (-16+4 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {4 e x+e \left (160 x-40 x^2\right ) \log (4)+e (-16+4 x) \log (4-x)+e^{\frac {e^{\frac {x}{e}}}{4}} \left (4 e+e (80-20 x) \log (4)+e^{\frac {x}{e}} \left (20 x-5 x^2\right ) \log (4)+e^{\frac {x}{e}} (-4+x) \log (4-x)\right )}{-16+4 x} \, dx}{e}\\ &=\frac {\int \left (-\frac {1}{4} e^{\frac {e^{\frac {x}{e}}}{4}+\frac {x}{e}} (5 x \log (4)-\log (4-x))+\frac {e \left (5 e^{\frac {e^{\frac {x}{e}}}{4}} x \log (4)+10 x^2 \log (4)-e^{\frac {e^{\frac {x}{e}}}{4}} (1+20 \log (4))-x (1+40 \log (4))+4 \log (4-x)-x \log (4-x)\right )}{4-x}\right ) \, dx}{e}\\ &=-\frac {\int e^{\frac {e^{\frac {x}{e}}}{4}+\frac {x}{e}} (5 x \log (4)-\log (4-x)) \, dx}{4 e}+\int \frac {5 e^{\frac {e^{\frac {x}{e}}}{4}} x \log (4)+10 x^2 \log (4)-e^{\frac {e^{\frac {x}{e}}}{4}} (1+20 \log (4))-x (1+40 \log (4))+4 \log (4-x)-x \log (4-x)}{4-x} \, dx\\ &=-\frac {\int \left (5 e^{\frac {e^{\frac {x}{e}}}{4}+\frac {x}{e}} x \log (4)-e^{\frac {e^{\frac {x}{e}}}{4}+\frac {x}{e}} \log (4-x)\right ) \, dx}{4 e}+\int \frac {-x (1+40 \log (4)-10 x \log (4))-e^{\frac {e^{\frac {x}{e}}}{4}} (1+20 \log (4)-5 x \log (4))-(-4+x) \log (4-x)}{4-x} \, dx\\ &=\frac {\int e^{\frac {e^{\frac {x}{e}}}{4}+\frac {x}{e}} \log (4-x) \, dx}{4 e}-\frac {(5 \log (4)) \int e^{\frac {e^{\frac {x}{e}}}{4}+\frac {x}{e}} x \, dx}{4 e}+\int \left (-\frac {e^{\frac {e^{\frac {x}{e}}}{4}} (-1-20 \log (4)+5 x \log (4))}{-4+x}+\frac {10 x^2 \log (4)-x (1+40 \log (4))+4 \log (4-x)-x \log (4-x)}{4-x}\right ) \, dx\\ &=e^{\frac {e^{\frac {x}{e}}}{4}} \log (4-x)-\frac {\int \frac {4 e^{\frac {1}{4} \left (4+e^{\frac {x}{e}}\right )}}{-4+x} \, dx}{4 e}-\frac {(5 \log (4)) \int e^{\frac {e^{\frac {x}{e}}}{4}+\frac {x}{e}} x \, dx}{4 e}-\int \frac {e^{\frac {e^{\frac {x}{e}}}{4}} (-1-20 \log (4)+5 x \log (4))}{-4+x} \, dx+\int \frac {10 x^2 \log (4)-x (1+40 \log (4))+4 \log (4-x)-x \log (4-x)}{4-x} \, dx\\ &=e^{\frac {e^{\frac {x}{e}}}{4}} \log (4-x)-\frac {\int \frac {e^{\frac {1}{4} \left (4+e^{\frac {x}{e}}\right )}}{-4+x} \, dx}{e}-\frac {(5 \log (4)) \int e^{\frac {e^{\frac {x}{e}}}{4}+\frac {x}{e}} x \, dx}{4 e}-\int \left (\frac {e^{\frac {e^{\frac {x}{e}}}{4}}}{4-x}+5 e^{\frac {e^{\frac {x}{e}}}{4}} \log (4)\right ) \, dx+\int \left (\frac {x (1+40 \log (4)-10 x \log (4))}{-4+x}+\log (4-x)\right ) \, dx\\ &=e^{\frac {e^{\frac {x}{e}}}{4}} \log (4-x)-\frac {\int \frac {e^{\frac {1}{4} \left (4+e^{\frac {x}{e}}\right )}}{-4+x} \, dx}{e}-(5 \log (4)) \int e^{\frac {e^{\frac {x}{e}}}{4}} \, dx-\frac {(5 \log (4)) \int e^{\frac {e^{\frac {x}{e}}}{4}+\frac {x}{e}} x \, dx}{4 e}-\int \frac {e^{\frac {e^{\frac {x}{e}}}{4}}}{4-x} \, dx+\int \frac {x (1+40 \log (4)-10 x \log (4))}{-4+x} \, dx+\int \log (4-x) \, dx\\ &=e^{\frac {e^{\frac {x}{e}}}{4}} \log (4-x)-\frac {\int \frac {e^{\frac {1}{4} \left (4+e^{\frac {x}{e}}\right )}}{-4+x} \, dx}{e}-\frac {(5 \log (4)) \int e^{\frac {e^{\frac {x}{e}}}{4}+\frac {x}{e}} x \, dx}{4 e}-(5 e \log (4)) \operatorname {Subst}\left (\int \frac {e^{x/4}}{x} \, dx,x,e^{\frac {x}{e}}\right )-\int \frac {e^{\frac {e^{\frac {x}{e}}}{4}}}{4-x} \, dx+\int \left (1+\frac {4}{-4+x}-10 x \log (4)\right ) \, dx-\operatorname {Subst}(\int \log (x) \, dx,x,4-x)\\ &=-5 x^2 \log (4)-5 e \text {Ei}\left (\frac {e^{\frac {x}{e}}}{4}\right ) \log (4)+4 \log (4-x)+e^{\frac {e^{\frac {x}{e}}}{4}} \log (4-x)-(4-x) \log (4-x)-\frac {\int \frac {e^{\frac {1}{4} \left (4+e^{\frac {x}{e}}\right )}}{-4+x} \, dx}{e}-\frac {(5 \log (4)) \int e^{\frac {e^{\frac {x}{e}}}{4}+\frac {x}{e}} x \, dx}{4 e}-\int \frac {e^{\frac {e^{\frac {x}{e}}}{4}}}{4-x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 50, normalized size = 1.67 \begin {gather*} -5 x \left (e^{\frac {e^{\frac {x}{e}}}{4}}+x\right ) \log (4)+\left (-4+e^{\frac {e^{\frac {x}{e}}}{4}}+x\right ) \log (4-x)+4 \log (-4+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.09, size = 40, normalized size = 1.33 \begin {gather*} -10 \, x^{2} \log \relax (2) - {\left (10 \, x \log \relax (2) - \log \left (-x + 4\right )\right )} e^{\left (\frac {1}{4} \, e^{\left (x e^{\left (-1\right )}\right )}\right )} + x \log \left (-x + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.28, size = 58, normalized size = 1.93 \begin {gather*} -{\left (10 \, x^{2} e \log \relax (2) + 10 \, x e^{\left (\frac {1}{4} \, e^{\left (x e^{\left (-1\right )}\right )} + 1\right )} \log \relax (2) - x e \log \left (-x + 4\right ) - e^{\left (\frac {1}{4} \, e^{\left (x e^{\left (-1\right )}\right )} + 1\right )} \log \left (-x + 4\right )\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 45, normalized size = 1.50
method | result | size |
risch | \(-10 x^{2} \ln \relax (2)+\ln \left (-x +4\right ) x +\left (-10 x \,{\mathrm e} \ln \relax (2)+{\mathrm e} \ln \left (-x +4\right )\right ) {\mathrm e}^{-1+\frac {{\mathrm e}^{{\mathrm e}^{-1} x}}{4}}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 155, normalized size = 5.17 \begin {gather*} -{\left (10 \, {\left (x^{2} + 8 \, x + 32 \, \log \left (x - 4\right )\right )} e \log \relax (2) - 80 \, {\left (x + 4 \, \log \left (x - 4\right )\right )} e \log \relax (2) - {\left (x + 4 \, \log \left (x - 4\right )\right )} e \log \left (-x + 4\right ) + 4 \, e \log \left (x - 4\right ) \log \left (-x + 4\right ) + {\left (2 \, \log \left (x - 4\right )^{2} + x + 4 \, \log \left (x - 4\right )\right )} e - 2 \, {\left (2 \, \log \left (x - 4\right ) \log \left (-x + 4\right ) - \log \left (-x + 4\right )^{2}\right )} e - {\left (x + 4 \, \log \left (x - 4\right )\right )} e + {\left (10 \, x e \log \relax (2) - e \log \left (-x + 4\right )\right )} e^{\left (\frac {1}{4} \, e^{\left (x e^{\left (-1\right )}\right )}\right )}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.51, size = 23, normalized size = 0.77 \begin {gather*} \left (x+{\mathrm {e}}^{\frac {{\mathrm {e}}^{x\,{\mathrm {e}}^{-1}}}{4}}\right )\,\left (\ln \left (4-x\right )-10\,x\,\ln \relax (2)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 40.82, size = 36, normalized size = 1.20 \begin {gather*} - 10 x^{2} \log {\relax (2 )} + x \log {\left (4 - x \right )} + \left (- 10 x \log {\relax (2 )} + \log {\left (4 - x \right )}\right ) e^{\frac {e^{\frac {x}{e}}}{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________