Optimal. Leaf size=21 \[ e^{x^2}+(x+\log ((-e+x) (3+\log (x))))^2 \]
________________________________________________________________________________________
Rubi [F] time = 10.11, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8 x^2-6 x^3+e \left (2 x+6 x^2\right )+e^{x^2} \left (6 e x^2-6 x^3\right )+\left (-2 x^2+2 e x^2-2 x^3+e^{x^2} \left (2 e x^2-2 x^3\right )\right ) \log (x)+\left (-8 x-6 x^2+e (2+6 x)+\left (-2 x+2 e x-2 x^2\right ) \log (x)\right ) \log (-3 e+3 x+(-e+x) \log (x))}{3 e x-3 x^2+\left (e x-x^2\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-8 x^2-6 x^3+e \left (2 x+6 x^2\right )+e^{x^2} \left (6 e x^2-6 x^3\right )+\left (-2 x^2+2 e x^2-2 x^3+e^{x^2} \left (2 e x^2-2 x^3\right )\right ) \log (x)+\left (-8 x-6 x^2+e (2+6 x)+\left (-2 x+2 e x-2 x^2\right ) \log (x)\right ) \log (-3 e+3 x+(-e+x) \log (x))}{(e-x) x (3+\log (x))} \, dx\\ &=\int \left (2 e^{x^2} x-\frac {8 x}{(e-x) (3+\log (x))}-\frac {6 x^2}{(e-x) (3+\log (x))}+\frac {2 e (1+3 x)}{(e-x) (3+\log (x))}-\frac {2 (1-e) x \log (x)}{(e-x) (3+\log (x))}-\frac {2 x^2 \log (x)}{(e-x) (3+\log (x))}+\frac {2 \left (e-4 \left (1-\frac {3 e}{4}\right ) x-3 x^2-(1-e) x \log (x)-x^2 \log (x)\right ) \log (-((e-x) (3+\log (x))))}{(e-x) x (3+\log (x))}\right ) \, dx\\ &=2 \int e^{x^2} x \, dx-2 \int \frac {x^2 \log (x)}{(e-x) (3+\log (x))} \, dx+2 \int \frac {\left (e-4 \left (1-\frac {3 e}{4}\right ) x-3 x^2-(1-e) x \log (x)-x^2 \log (x)\right ) \log (-((e-x) (3+\log (x))))}{(e-x) x (3+\log (x))} \, dx-6 \int \frac {x^2}{(e-x) (3+\log (x))} \, dx-8 \int \frac {x}{(e-x) (3+\log (x))} \, dx-(2 (1-e)) \int \frac {x \log (x)}{(e-x) (3+\log (x))} \, dx+(2 e) \int \frac {1+3 x}{(e-x) (3+\log (x))} \, dx\\ &=e^{x^2}-2 \int \left (\frac {x^2}{e-x}-\frac {3 x^2}{(e-x) (3+\log (x))}\right ) \, dx+2 \int \frac {(e+3 e x-x (4+3 x)-x (1-e+x) \log (x)) \log (-((e-x) (3+\log (x))))}{(e-x) x (3+\log (x))} \, dx-6 \int \frac {x^2}{(e-x) (3+\log (x))} \, dx-8 \int \frac {x}{(e-x) (3+\log (x))} \, dx-(2 (1-e)) \int \left (\frac {x}{e-x}-\frac {3 x}{(e-x) (3+\log (x))}\right ) \, dx+(2 e) \int \frac {1+3 x}{(e-x) (3+\log (x))} \, dx\\ &=e^{x^2}-2 \int \frac {x^2}{e-x} \, dx+2 \int \left (\frac {\left (e-4 \left (1-\frac {3 e}{4}\right ) x-3 x^2-(1-e) x \log (x)-x^2 \log (x)\right ) \log (-((e-x) (3+\log (x))))}{e (e-x) (3+\log (x))}+\frac {\left (e-4 \left (1-\frac {3 e}{4}\right ) x-3 x^2-(1-e) x \log (x)-x^2 \log (x)\right ) \log (-((e-x) (3+\log (x))))}{e x (3+\log (x))}\right ) \, dx-8 \int \frac {x}{(e-x) (3+\log (x))} \, dx-(2 (1-e)) \int \frac {x}{e-x} \, dx+(6 (1-e)) \int \frac {x}{(e-x) (3+\log (x))} \, dx+(2 e) \int \frac {1+3 x}{(e-x) (3+\log (x))} \, dx\\ &=e^{x^2}-2 \int \left (-e+\frac {e^2}{e-x}-x\right ) \, dx-8 \int \frac {x}{(e-x) (3+\log (x))} \, dx-(2 (1-e)) \int \left (-1+\frac {e}{e-x}\right ) \, dx+(6 (1-e)) \int \frac {x}{(e-x) (3+\log (x))} \, dx+\frac {2 \int \frac {\left (e-4 \left (1-\frac {3 e}{4}\right ) x-3 x^2-(1-e) x \log (x)-x^2 \log (x)\right ) \log (-((e-x) (3+\log (x))))}{(e-x) (3+\log (x))} \, dx}{e}+\frac {2 \int \frac {\left (e-4 \left (1-\frac {3 e}{4}\right ) x-3 x^2-(1-e) x \log (x)-x^2 \log (x)\right ) \log (-((e-x) (3+\log (x))))}{x (3+\log (x))} \, dx}{e}+(2 e) \int \frac {1+3 x}{(e-x) (3+\log (x))} \, dx\\ &=e^{x^2}+2 (1-e) x+2 e x+x^2+2 (1-e) e \log (e-x)+2 e^2 \log (e-x)-8 \int \frac {x}{(e-x) (3+\log (x))} \, dx+(6 (1-e)) \int \frac {x}{(e-x) (3+\log (x))} \, dx+\frac {2 \int \frac {(e+3 e x-x (4+3 x)-x (1-e+x) \log (x)) \log (-((e-x) (3+\log (x))))}{(e-x) (3+\log (x))} \, dx}{e}+\frac {2 \int \frac {(e+3 e x-x (4+3 x)-x (1-e+x) \log (x)) \log (-((e-x) (3+\log (x))))}{x (3+\log (x))} \, dx}{e}+(2 e) \int \frac {1+3 x}{(e-x) (3+\log (x))} \, dx\\ &=e^{x^2}+2 (1-e) x+2 e x+x^2+2 (1-e) e \log (e-x)+2 e^2 \log (e-x)-8 \int \frac {x}{(e-x) (3+\log (x))} \, dx+(6 (1-e)) \int \frac {x}{(e-x) (3+\log (x))} \, dx+\frac {2 \int \left (-\frac {4 \left (1-\frac {3 e}{4}\right ) \log (-((e-x) (3+\log (x))))}{3+\log (x)}+\frac {e \log (-((e-x) (3+\log (x))))}{x (3+\log (x))}-\frac {3 x \log (-((e-x) (3+\log (x))))}{3+\log (x)}-\frac {(1-e) \log (x) \log (-((e-x) (3+\log (x))))}{3+\log (x)}-\frac {x \log (x) \log (-((e-x) (3+\log (x))))}{3+\log (x)}\right ) \, dx}{e}+\frac {2 \int \left (\frac {e \log (-((e-x) (3+\log (x))))}{(e-x) (3+\log (x))}-\frac {4 \left (1-\frac {3 e}{4}\right ) x \log (-((e-x) (3+\log (x))))}{(e-x) (3+\log (x))}-\frac {3 x^2 \log (-((e-x) (3+\log (x))))}{(e-x) (3+\log (x))}-\frac {(1-e) x \log (x) \log (-((e-x) (3+\log (x))))}{(e-x) (3+\log (x))}-\frac {x^2 \log (x) \log (-((e-x) (3+\log (x))))}{(e-x) (3+\log (x))}\right ) \, dx}{e}+(2 e) \int \frac {1+3 x}{(e-x) (3+\log (x))} \, dx\\ &=e^{x^2}+2 (1-e) x+2 e x+x^2+2 (1-e) e \log (e-x)+2 e^2 \log (e-x)+2 \int \frac {\log (-((e-x) (3+\log (x))))}{(e-x) (3+\log (x))} \, dx+2 \int \frac {\log (-((e-x) (3+\log (x))))}{x (3+\log (x))} \, dx-8 \int \frac {x}{(e-x) (3+\log (x))} \, dx+(6 (1-e)) \int \frac {x}{(e-x) (3+\log (x))} \, dx-\frac {2 \int \frac {x \log (x) \log (-((e-x) (3+\log (x))))}{3+\log (x)} \, dx}{e}-\frac {2 \int \frac {x^2 \log (x) \log (-((e-x) (3+\log (x))))}{(e-x) (3+\log (x))} \, dx}{e}-\frac {6 \int \frac {x \log (-((e-x) (3+\log (x))))}{3+\log (x)} \, dx}{e}-\frac {6 \int \frac {x^2 \log (-((e-x) (3+\log (x))))}{(e-x) (3+\log (x))} \, dx}{e}-\frac {(2 (4-3 e)) \int \frac {\log (-((e-x) (3+\log (x))))}{3+\log (x)} \, dx}{e}-\frac {(2 (4-3 e)) \int \frac {x \log (-((e-x) (3+\log (x))))}{(e-x) (3+\log (x))} \, dx}{e}+\frac {(2 (-1+e)) \int \frac {\log (x) \log (-((e-x) (3+\log (x))))}{3+\log (x)} \, dx}{e}+\frac {(2 (-1+e)) \int \frac {x \log (x) \log (-((e-x) (3+\log (x))))}{(e-x) (3+\log (x))} \, dx}{e}+(2 e) \int \frac {1+3 x}{(e-x) (3+\log (x))} \, dx\\ &=e^{x^2}+2 (1-e) x+2 e x+x^2+2 (1-e) e \log (e-x)+2 e^2 \log (e-x)+2 \int \frac {\log (-((e-x) (3+\log (x))))}{(e-x) (3+\log (x))} \, dx+2 \int \frac {\log (-((e-x) (3+\log (x))))}{x (3+\log (x))} \, dx-8 \int \frac {x}{(e-x) (3+\log (x))} \, dx+(6 (1-e)) \int \frac {x}{(e-x) (3+\log (x))} \, dx-\frac {2 \int \frac {x \log (x) \log (-((e-x) (3+\log (x))))}{3+\log (x)} \, dx}{e}-\frac {2 \int \left (-\frac {e \log (x) \log (-((e-x) (3+\log (x))))}{3+\log (x)}+\frac {e^2 \log (x) \log (-((e-x) (3+\log (x))))}{(e-x) (3+\log (x))}-\frac {x \log (x) \log (-((e-x) (3+\log (x))))}{3+\log (x)}\right ) \, dx}{e}-\frac {6 \int \frac {x \log (-((e-x) (3+\log (x))))}{3+\log (x)} \, dx}{e}-\frac {6 \int \left (-\frac {e \log (-((e-x) (3+\log (x))))}{3+\log (x)}+\frac {e^2 \log (-((e-x) (3+\log (x))))}{(e-x) (3+\log (x))}-\frac {x \log (-((e-x) (3+\log (x))))}{3+\log (x)}\right ) \, dx}{e}-\frac {(2 (4-3 e)) \int \frac {\log (-((e-x) (3+\log (x))))}{3+\log (x)} \, dx}{e}-\frac {(2 (4-3 e)) \int \left (-\frac {\log (-((e-x) (3+\log (x))))}{3+\log (x)}+\frac {e \log (-((e-x) (3+\log (x))))}{(e-x) (3+\log (x))}\right ) \, dx}{e}+\frac {(2 (-1+e)) \int \frac {\log (x) \log (-((e-x) (3+\log (x))))}{3+\log (x)} \, dx}{e}+\frac {(2 (-1+e)) \int \left (-\frac {\log (x) \log (-((e-x) (3+\log (x))))}{3+\log (x)}+\frac {e \log (x) \log (-((e-x) (3+\log (x))))}{(e-x) (3+\log (x))}\right ) \, dx}{e}+(2 e) \int \frac {1+3 x}{(e-x) (3+\log (x))} \, dx\\ &=e^{x^2}+2 (1-e) x+2 e x+x^2+2 (1-e) e \log (e-x)+2 e^2 \log (e-x)+2 \int \frac {\log (-((e-x) (3+\log (x))))}{(e-x) (3+\log (x))} \, dx+2 \int \frac {\log (-((e-x) (3+\log (x))))}{x (3+\log (x))} \, dx+2 \int \frac {\log (x) \log (-((e-x) (3+\log (x))))}{3+\log (x)} \, dx+6 \int \frac {\log (-((e-x) (3+\log (x))))}{3+\log (x)} \, dx-8 \int \frac {x}{(e-x) (3+\log (x))} \, dx-(2 (4-3 e)) \int \frac {\log (-((e-x) (3+\log (x))))}{(e-x) (3+\log (x))} \, dx-(2 (1-e)) \int \frac {\log (x) \log (-((e-x) (3+\log (x))))}{(e-x) (3+\log (x))} \, dx+(6 (1-e)) \int \frac {x}{(e-x) (3+\log (x))} \, dx+(2 e) \int \frac {1+3 x}{(e-x) (3+\log (x))} \, dx-(2 e) \int \frac {\log (x) \log (-((e-x) (3+\log (x))))}{(e-x) (3+\log (x))} \, dx-(6 e) \int \frac {\log (-((e-x) (3+\log (x))))}{(e-x) (3+\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 38, normalized size = 1.81 \begin {gather*} e^{x^2}+x^2+2 x \log (-((e-x) (3+\log (x))))+\log ^2(-((e-x) (3+\log (x)))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.62, size = 49, normalized size = 2.33 \begin {gather*} x^{2} + 2 \, x \log \left ({\left (x - e\right )} \log \relax (x) + 3 \, x - 3 \, e\right ) + \log \left ({\left (x - e\right )} \log \relax (x) + 3 \, x - 3 \, e\right )^{2} + e^{\left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (3 \, x^{3} + 4 \, x^{2} - {\left (3 \, x^{2} + x\right )} e + 3 \, {\left (x^{3} - x^{2} e\right )} e^{\left (x^{2}\right )} + {\left (3 \, x^{2} - {\left (3 \, x + 1\right )} e + {\left (x^{2} - x e + x\right )} \log \relax (x) + 4 \, x\right )} \log \left ({\left (x - e\right )} \log \relax (x) + 3 \, x - 3 \, e\right ) + {\left (x^{3} - x^{2} e + x^{2} + {\left (x^{3} - x^{2} e\right )} e^{\left (x^{2}\right )}\right )} \log \relax (x)\right )}}{3 \, x^{2} - 3 \, x e + {\left (x^{2} - x e\right )} \log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.32, size = 544, normalized size = 25.90
method | result | size |
risch | \(\ln \left (3+\ln \relax (x )\right )^{2}+{\mathrm e}^{x^{2}}+x^{2}-2 i \pi x \mathrm {csgn}\left (i \left (3+\ln \relax (x )\right ) \left ({\mathrm e}-x \right )\right )^{2}-2 i \pi \ln \left (3+\ln \relax (x )\right ) \mathrm {csgn}\left (i \left (3+\ln \relax (x )\right ) \left ({\mathrm e}-x \right )\right )^{2}-2 i \pi \ln \left (x -{\mathrm e}\right ) \mathrm {csgn}\left (i \left (3+\ln \relax (x )\right ) \left ({\mathrm e}-x \right )\right )^{2}+2 i \pi \ln \left (x -{\mathrm e}\right )+2 i \pi \ln \left (3+\ln \relax (x )\right )+2 i \pi x +2 x \ln \left (3+\ln \relax (x )\right )+\ln \left ({\mathrm e}-x \right )^{2}+i \pi x \mathrm {csgn}\left (i \left (3+\ln \relax (x )\right ) \left ({\mathrm e}-x \right )\right )^{3}+i \pi \ln \left (3+\ln \relax (x )\right ) \mathrm {csgn}\left (i \left (3+\ln \relax (x )\right ) \left ({\mathrm e}-x \right )\right )^{3}+i \pi x \,\mathrm {csgn}\left (i \left ({\mathrm e}-x \right )\right ) \mathrm {csgn}\left (i \left (3+\ln \relax (x )\right ) \left ({\mathrm e}-x \right )\right )^{2}+i \pi \ln \left (3+\ln \relax (x )\right ) \mathrm {csgn}\left (i \left (3+\ln \relax (x )\right )\right ) \mathrm {csgn}\left (i \left (3+\ln \relax (x )\right ) \left ({\mathrm e}-x \right )\right )^{2}+i \pi \ln \left (3+\ln \relax (x )\right ) \mathrm {csgn}\left (i \left ({\mathrm e}-x \right )\right ) \mathrm {csgn}\left (i \left (3+\ln \relax (x )\right ) \left ({\mathrm e}-x \right )\right )^{2}+\left (2 x +2 \ln \left (3+\ln \relax (x )\right )\right ) \ln \left ({\mathrm e}-x \right )+i \pi \ln \left (x -{\mathrm e}\right ) \mathrm {csgn}\left (i \left (3+\ln \relax (x )\right )\right ) \mathrm {csgn}\left (i \left (3+\ln \relax (x )\right ) \left ({\mathrm e}-x \right )\right )^{2}+i \pi \ln \left (x -{\mathrm e}\right ) \mathrm {csgn}\left (i \left ({\mathrm e}-x \right )\right ) \mathrm {csgn}\left (i \left (3+\ln \relax (x )\right ) \left ({\mathrm e}-x \right )\right )^{2}+i \pi x \,\mathrm {csgn}\left (i \left (3+\ln \relax (x )\right )\right ) \mathrm {csgn}\left (i \left (3+\ln \relax (x )\right ) \left ({\mathrm e}-x \right )\right )^{2}+i \pi \ln \left (x -{\mathrm e}\right ) \mathrm {csgn}\left (i \left (3+\ln \relax (x )\right ) \left ({\mathrm e}-x \right )\right )^{3}-i \pi x \,\mathrm {csgn}\left (i \left (3+\ln \relax (x )\right )\right ) \mathrm {csgn}\left (i \left ({\mathrm e}-x \right )\right ) \mathrm {csgn}\left (i \left (3+\ln \relax (x )\right ) \left ({\mathrm e}-x \right )\right )-i \pi \ln \left (x -{\mathrm e}\right ) \mathrm {csgn}\left (i \left (3+\ln \relax (x )\right )\right ) \mathrm {csgn}\left (i \left ({\mathrm e}-x \right )\right ) \mathrm {csgn}\left (i \left (3+\ln \relax (x )\right ) \left ({\mathrm e}-x \right )\right )-i \pi \ln \left (3+\ln \relax (x )\right ) \mathrm {csgn}\left (i \left (3+\ln \relax (x )\right )\right ) \mathrm {csgn}\left (i \left ({\mathrm e}-x \right )\right ) \mathrm {csgn}\left (i \left (3+\ln \relax (x )\right ) \left ({\mathrm e}-x \right )\right )\) | \(544\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.42, size = 48, normalized size = 2.29 \begin {gather*} x^{2} + 2 \, {\left (x + \log \left (\log \relax (x) + 3\right )\right )} \log \left (x - e\right ) + \log \left (x - e\right )^{2} + 2 \, x \log \left (\log \relax (x) + 3\right ) + \log \left (\log \relax (x) + 3\right )^{2} + e^{\left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.70, size = 72, normalized size = 3.43 \begin {gather*} {\mathrm {e}}^{x^2}+{\ln \left (3\,x-3\,\mathrm {e}+\ln \relax (x)\,\left (x-\mathrm {e}\right )\right )}^2+x^2-\frac {\ln \left (3\,x-3\,\mathrm {e}+\ln \relax (x)\,\left (x-\mathrm {e}\right )\right )\,\left (2\,x^2\,\mathrm {e}-2\,x^3\right )}{x\,\left (x-\mathrm {e}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.98, size = 49, normalized size = 2.33 \begin {gather*} x^{2} + 2 x \log {\left (3 x + \left (x - e\right ) \log {\relax (x )} - 3 e \right )} + e^{x^{2}} + \log {\left (3 x + \left (x - e\right ) \log {\relax (x )} - 3 e \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________