Optimal. Leaf size=20 \[ 2+e^{\frac {-2 x+\frac {\log (4)}{x}}{x^2}}+\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 16, normalized size of antiderivative = 0.80, number of steps used = 3, number of rules used = 2, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.061, Rules used = {14, 2288} \begin {gather*} 4^{\frac {1}{x^3}} e^{-2/x}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{x}+\frac {4^{\frac {1}{x^3}} e^{-2/x} \left (2 x^2-3 \log (4)\right )}{x^4}\right ) \, dx\\ &=\log (x)+\int \frac {4^{\frac {1}{x^3}} e^{-2/x} \left (2 x^2-3 \log (4)\right )}{x^4} \, dx\\ &=4^{\frac {1}{x^3}} e^{-2/x}+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 16, normalized size = 0.80 \begin {gather*} 4^{\frac {1}{x^3}} e^{-2/x}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 17, normalized size = 0.85 \begin {gather*} e^{\left (-\frac {2 \, {\left (x^{2} - \log \relax (2)\right )}}{x^{3}}\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 17, normalized size = 0.85 \begin {gather*} e^{\left (-\frac {2}{x} + \frac {2 \, \log \relax (2)}{x^{3}}\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 16, normalized size = 0.80
method | result | size |
risch | \(4^{\frac {1}{x^{3}}} {\mathrm e}^{-\frac {2}{x}}+\ln \relax (x )\) | \(16\) |
norman | \({\mathrm e}^{\frac {2 \ln \relax (2)-2 x^{2}}{x^{3}}}+\ln \relax (x )\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 17, normalized size = 0.85 \begin {gather*} e^{\left (-\frac {2}{x} + \frac {2 \, \log \relax (2)}{x^{3}}\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.18, size = 17, normalized size = 0.85 \begin {gather*} \ln \relax (x)+2^{\frac {2}{x^3}}\,{\mathrm {e}}^{-\frac {2}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 17, normalized size = 0.85 \begin {gather*} e^{\frac {- 2 x^{2} + 2 \log {\relax (2 )}}{x^{3}}} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________