Optimal. Leaf size=31 \[ 2-2 x-x^2+\frac {1+x^2}{\log (5)}+(1-x) \log (\log (-2+x)) \]
________________________________________________________________________________________
Rubi [A] time = 0.27, antiderivative size = 45, normalized size of antiderivative = 1.45, number of steps used = 13, number of rules used = 9, integrand size = 69, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {12, 6688, 6, 2411, 2353, 2298, 2302, 29, 2520} \begin {gather*} \frac {x^2 (2-\log (25))}{2 \log (5)}-\frac {x \log (25)}{\log (5)}+(2-x) \log (\log (x-2))-\log (\log (x-2)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 29
Rule 2298
Rule 2302
Rule 2353
Rule 2411
Rule 2520
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {(1-x) \log (5)+\left (-4 x+2 x^2+\left (4+2 x-2 x^2\right ) \log (5)\right ) \log (-2+x)+(2-x) \log (5) \log (-2+x) \log (\log (-2+x))}{(-2+x) \log (-2+x)} \, dx}{\log (5)}\\ &=\frac {\int \left (2 x-\log (25)-x \log (25)-\frac {(-1+x) \log (5)}{(-2+x) \log (-2+x)}-\log (5) \log (\log (-2+x))\right ) \, dx}{\log (5)}\\ &=\frac {\int \left (x (2-\log (25))-\log (25)-\frac {(-1+x) \log (5)}{(-2+x) \log (-2+x)}-\log (5) \log (\log (-2+x))\right ) \, dx}{\log (5)}\\ &=\frac {x^2 (2-\log (25))}{2 \log (5)}-\frac {x \log (25)}{\log (5)}-\int \frac {-1+x}{(-2+x) \log (-2+x)} \, dx-\int \log (\log (-2+x)) \, dx\\ &=\frac {x^2 (2-\log (25))}{2 \log (5)}-\frac {x \log (25)}{\log (5)}-\operatorname {Subst}\left (\int \frac {1+x}{x \log (x)} \, dx,x,-2+x\right )-\operatorname {Subst}(\int \log (\log (x)) \, dx,x,-2+x)\\ &=\frac {x^2 (2-\log (25))}{2 \log (5)}-\frac {x \log (25)}{\log (5)}-(-2+x) \log (\log (-2+x))-\operatorname {Subst}\left (\int \left (\frac {1}{\log (x)}+\frac {1}{x \log (x)}\right ) \, dx,x,-2+x\right )+\operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,-2+x\right )\\ &=\frac {x^2 (2-\log (25))}{2 \log (5)}-\frac {x \log (25)}{\log (5)}-(-2+x) \log (\log (-2+x))+\text {li}(-2+x)-\operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,-2+x\right )-\operatorname {Subst}\left (\int \frac {1}{x \log (x)} \, dx,x,-2+x\right )\\ &=\frac {x^2 (2-\log (25))}{2 \log (5)}-\frac {x \log (25)}{\log (5)}-(-2+x) \log (\log (-2+x))-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (-2+x)\right )\\ &=\frac {x^2 (2-\log (25))}{2 \log (5)}-\frac {x \log (25)}{\log (5)}-\log (\log (-2+x))-(-2+x) \log (\log (-2+x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 50, normalized size = 1.61 \begin {gather*} -\frac {(-2+x)^2 (-2+\log (25))}{2 \log (5)}-\frac {(-2+x) (-4+3 \log (25))}{\log (5)}-\log (\log (-2+x))-(-2+x) \log (\log (-2+x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.00, size = 33, normalized size = 1.06 \begin {gather*} -\frac {{\left (x - 1\right )} \log \relax (5) \log \left (\log \left (x - 2\right )\right ) - x^{2} + {\left (x^{2} + 2 \, x\right )} \log \relax (5)}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 38, normalized size = 1.23 \begin {gather*} -\frac {x^{2} {\left (\log \relax (5) - 1\right )} + x \log \relax (5) \log \left (\log \left (x - 2\right )\right ) + 2 \, x \log \relax (5) - \log \relax (5) \log \left (\log \left (x - 2\right )\right )}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 31, normalized size = 1.00
method | result | size |
norman | \(\ln \left (\ln \left (x -2\right )\right )-2 x -x \ln \left (\ln \left (x -2\right )\right )-\frac {\left (\ln \relax (5)-1\right ) x^{2}}{\ln \relax (5)}\) | \(31\) |
risch | \(-x \ln \left (\ln \left (x -2\right )\right )-x^{2}+\ln \left (\ln \left (x -2\right )\right )-2 x +\frac {x^{2}}{\ln \relax (5)}\) | \(31\) |
default | \(\frac {-\ln \relax (5) \ln \left (\ln \left (x -2\right )\right ) x -x^{2} \ln \relax (5)+\ln \relax (5) \ln \left (\ln \left (x -2\right )\right )-2 x \ln \relax (5)+x^{2}}{\ln \relax (5)}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 90, normalized size = 2.90 \begin {gather*} -\frac {x^{2} {\left (\log \relax (5) - 1\right )} - 6 \, \log \relax (5) \log \left (x - 2\right ) \log \left (\log \left (x - 2\right )\right ) + 4 \, {\left (\log \left (x - 2\right ) \log \left (\log \left (x - 2\right )\right ) - \log \left (x - 2\right )\right )} \log \relax (5) + 2 \, x \log \relax (5) + 4 \, \log \relax (5) \log \left (x - 2\right ) + {\left (x \log \relax (5) + 2 \, \log \relax (5) \log \left (x - 2\right )\right )} \log \left (\log \left (x - 2\right )\right ) - \log \relax (5) \log \left (\log \left (x - 2\right )\right )}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.69, size = 34, normalized size = 1.10 \begin {gather*} -2\,x-\ln \left (\ln \left (x-2\right )\right )-\ln \left (\ln \left (x-2\right )\right )\,\left (x-2\right )-\frac {x^2\,\left (\ln \left (25\right )-2\right )}{2\,\ln \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.46, size = 24, normalized size = 0.77 \begin {gather*} \frac {x^{2} \left (1 - \log {\relax (5 )}\right )}{\log {\relax (5 )}} - 2 x + \left (1 - x\right ) \log {\left (\log {\left (x - 2 \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________