Optimal. Leaf size=16 \[ 14+e^x+x (\log (2)+\log (8-x)) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 29, normalized size of antiderivative = 1.81, number of steps used = 7, number of rules used = 5, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {6688, 2194, 43, 2389, 2295} \begin {gather*} e^x+x \log (2)-(8-x) \log (8-x)+8 \log (8-x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 2194
Rule 2295
Rule 2389
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^x+\frac {x}{-8+x}+\log (2)+\log (8-x)\right ) \, dx\\ &=x \log (2)+\int e^x \, dx+\int \frac {x}{-8+x} \, dx+\int \log (8-x) \, dx\\ &=e^x+x \log (2)+\int \left (1+\frac {8}{-8+x}\right ) \, dx-\operatorname {Subst}(\int \log (x) \, dx,x,8-x)\\ &=e^x+x \log (2)+8 \log (8-x)-(8-x) \log (8-x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 27, normalized size = 1.69 \begin {gather*} e^x+x \log (2)-(8-x) \log (8-x)+8 \log (-8+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.97, size = 15, normalized size = 0.94 \begin {gather*} x \log \relax (2) + x \log \left (-x + 8\right ) + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 15, normalized size = 0.94 \begin {gather*} x \log \relax (2) + x \log \left (-x + 8\right ) + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 16, normalized size = 1.00
method | result | size |
norman | \(x \ln \relax (2)+\ln \left (8-x \right ) x +{\mathrm e}^{x}\) | \(16\) |
risch | \(x \ln \relax (2)+\ln \left (8-x \right ) x +{\mathrm e}^{x}\) | \(16\) |
default | \(x \ln \relax (2)+8 \ln \left (-8+x \right )+{\mathrm e}^{x}-\ln \left (8-x \right ) \left (8-x \right )+8\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 8 \, e^{8} E_{1}\left (-x + 8\right ) + {\left (x + 8 \, \log \left (x - 8\right )\right )} \log \relax (2) - 8 \, \log \relax (2) \log \left (x - 8\right ) - 4 \, \log \left (x - 8\right )^{2} + {\left (x + 8 \, \log \left (x - 8\right )\right )} \log \left (-x + 8\right ) - 4 \, \log \left (-x + 8\right )^{2} + \frac {x e^{x}}{x - 8} + 8 \, \int \frac {e^{x}}{x^{2} - 16 \, x + 64}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.13, size = 11, normalized size = 0.69 \begin {gather*} {\mathrm {e}}^x+x\,\ln \left (16-2\,x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 14, normalized size = 0.88 \begin {gather*} x \log {\left (8 - x \right )} + x \log {\relax (2 )} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________