Optimal. Leaf size=34 \[ \frac {-x+625 \log ^2\left (\frac {e^{2 e^x}}{x-x^2}\right )}{5+4 e} \]
________________________________________________________________________________________
Rubi [F] time = 1.40, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x-x^2+\left (1250-2500 x+e^x \left (-2500 x+2500 x^2\right )\right ) \log \left (-\frac {e^{2 e^x}}{-x+x^2}\right )}{-5 x+5 x^2+e \left (-4 x+4 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-x+x^2-\left (1250-2500 x+e^x \left (-2500 x+2500 x^2\right )\right ) \log \left (-\frac {e^{2 e^x}}{-x+x^2}\right )}{x (5+4 e-(5+4 e) x)} \, dx\\ &=\int \left (\frac {1}{(5+4 e) (-1+x)}-\frac {x}{(5+4 e) (-1+x)}+\frac {2500 e^x \log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{5+4 e}+\frac {2500 \log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{(5+4 e) (1-x)}+\frac {1250 \log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{(-5-4 e) (1-x) x}\right ) \, dx\\ &=\frac {\log (1-x)}{5+4 e}-\frac {\int \frac {x}{-1+x} \, dx}{5+4 e}-\frac {1250 \int \frac {\log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{(1-x) x} \, dx}{5+4 e}+\frac {2500 \int e^x \log \left (\frac {e^{2 e^x}}{(1-x) x}\right ) \, dx}{5+4 e}+\frac {2500 \int \frac {\log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{1-x} \, dx}{5+4 e}\\ &=\frac {\log (1-x)}{5+4 e}+\frac {2500 e^x \log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{5+4 e}-\frac {\int \left (1+\frac {1}{-1+x}\right ) \, dx}{5+4 e}-\frac {1250 \int \left (\frac {\log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{1-x}+\frac {\log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{x}\right ) \, dx}{5+4 e}-\frac {2500 \int \frac {e^x \left (-1+2 \left (1+e^x\right ) x-2 e^x x^2\right )}{(1-x) x} \, dx}{5+4 e}+\frac {2500 \int \frac {\log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{1-x} \, dx}{5+4 e}\\ &=-\frac {x}{5+4 e}+\frac {2500 e^x \log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{5+4 e}-\frac {1250 \int \frac {\log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{1-x} \, dx}{5+4 e}-\frac {1250 \int \frac {\log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{x} \, dx}{5+4 e}-\frac {2500 \int \left (2 e^{2 x}+\frac {e^x (1-2 x)}{(-1+x) x}\right ) \, dx}{5+4 e}+\frac {2500 \int \frac {\log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{1-x} \, dx}{5+4 e}\\ &=-\frac {x}{5+4 e}+\frac {2500 e^x \log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{5+4 e}-\frac {1250 \int \frac {\log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{1-x} \, dx}{5+4 e}-\frac {1250 \int \frac {\log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{x} \, dx}{5+4 e}-\frac {2500 \int \frac {e^x (1-2 x)}{(-1+x) x} \, dx}{5+4 e}+\frac {2500 \int \frac {\log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{1-x} \, dx}{5+4 e}-\frac {5000 \int e^{2 x} \, dx}{5+4 e}\\ &=-\frac {2500 e^{2 x}}{5+4 e}-\frac {x}{5+4 e}+\frac {2500 e^x \log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{5+4 e}-\frac {1250 \int \frac {\log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{1-x} \, dx}{5+4 e}-\frac {1250 \int \frac {\log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{x} \, dx}{5+4 e}-\frac {2500 \int \left (\frac {e^x}{1-x}-\frac {e^x}{x}\right ) \, dx}{5+4 e}+\frac {2500 \int \frac {\log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{1-x} \, dx}{5+4 e}\\ &=-\frac {2500 e^{2 x}}{5+4 e}-\frac {x}{5+4 e}+\frac {2500 e^x \log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{5+4 e}-\frac {1250 \int \frac {\log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{1-x} \, dx}{5+4 e}-\frac {1250 \int \frac {\log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{x} \, dx}{5+4 e}-\frac {2500 \int \frac {e^x}{1-x} \, dx}{5+4 e}+\frac {2500 \int \frac {e^x}{x} \, dx}{5+4 e}+\frac {2500 \int \frac {\log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{1-x} \, dx}{5+4 e}\\ &=-\frac {2500 e^{2 x}}{5+4 e}-\frac {x}{5+4 e}+\frac {2500 e \text {Ei}(-1+x)}{5+4 e}+\frac {2500 \text {Ei}(x)}{5+4 e}+\frac {2500 e^x \log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{5+4 e}-\frac {1250 \int \frac {\log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{1-x} \, dx}{5+4 e}-\frac {1250 \int \frac {\log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{x} \, dx}{5+4 e}+\frac {2500 \int \frac {\log \left (\frac {e^{2 e^x}}{(1-x) x}\right )}{1-x} \, dx}{5+4 e}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.23, size = 143, normalized size = 4.21 \begin {gather*} \frac {-2500 e^{2 x}-x+625 \log ^2\left (\frac {1}{(-1+x) x}\right )+2500 e^x \log (x)+1250 \log \left (\frac {1}{(-1+x) x}\right ) \log (x)+1250 \log (1-x) \left (2 e^x+\log \left (\frac {1}{(-1+x) x}\right )-\log \left (\frac {e^{2 e^x}}{x-x^2}\right )\right )+2500 e^x \log \left (\frac {e^{2 e^x}}{x-x^2}\right )-1250 \log (x) \log \left (\frac {e^{2 e^x}}{x-x^2}\right )}{5+4 e} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.93, size = 34, normalized size = 1.00 \begin {gather*} \frac {625 \, \log \left (-\frac {e^{\left (2 \, e^{x}\right )}}{x^{2} - x}\right )^{2} - x}{4 \, e + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {x^{2} - 1250 \, {\left (2 \, {\left (x^{2} - x\right )} e^{x} - 2 \, x + 1\right )} \log \left (-\frac {e^{\left (2 \, e^{x}\right )}}{x^{2} - x}\right ) - x}{5 \, x^{2} + 4 \, {\left (x^{2} - x\right )} e - 5 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.75, size = 334, normalized size = 9.82
method | result | size |
default | \(-\frac {2500 \ln \left (x^{2}-x \right ) {\mathrm e}^{x}}{5+4 \,{\mathrm e}}+\frac {5000 \,{\mathrm e}^{x} \left (\ln \left ({\mathrm e}^{{\mathrm e}^{x}}\right )-{\mathrm e}^{x}\right )}{5+4 \,{\mathrm e}}+\frac {2500 \left (\ln \left (-\frac {{\mathrm e}^{2 \,{\mathrm e}^{x}}}{x^{2}-x}\right )-2 \ln \left ({\mathrm e}^{{\mathrm e}^{x}}\right )+\ln \left (x^{2}-x \right )\right ) {\mathrm e}^{x}}{5+4 \,{\mathrm e}}+\frac {2500 \,{\mathrm e}^{2 x}}{5+4 \,{\mathrm e}}-\frac {2500 \ln \relax (x ) \left (\ln \left ({\mathrm e}^{{\mathrm e}^{x}}\right )-{\mathrm e}^{x}\right )}{5+4 \,{\mathrm e}}-\frac {1250 \ln \relax (x ) \left (\ln \left (-\frac {{\mathrm e}^{2 \,{\mathrm e}^{x}}}{x^{2}-x}\right )-2 \ln \left ({\mathrm e}^{{\mathrm e}^{x}}\right )+\ln \left (x^{2}-x \right )\right )}{5+4 \,{\mathrm e}}-\frac {2500 \ln \left (x -1\right ) \left (\ln \left ({\mathrm e}^{{\mathrm e}^{x}}\right )-{\mathrm e}^{x}\right )}{5+4 \,{\mathrm e}}-\frac {1250 \ln \left (x -1\right ) \left (\ln \left (-\frac {{\mathrm e}^{2 \,{\mathrm e}^{x}}}{x^{2}-x}\right )-2 \ln \left ({\mathrm e}^{{\mathrm e}^{x}}\right )+\ln \left (x^{2}-x \right )\right )}{5+4 \,{\mathrm e}}-\frac {x}{5+4 \,{\mathrm e}}+\frac {1250 \ln \relax (x ) \ln \left (x^{2}-x \right )}{5+4 \,{\mathrm e}}-\frac {625 \ln \relax (x )^{2}}{5+4 \,{\mathrm e}}+\frac {1250 \ln \left (x -1\right ) \ln \left (x^{2}-x \right )}{5+4 \,{\mathrm e}}-\frac {625 \ln \left (x -1\right )^{2}}{5+4 \,{\mathrm e}}-\frac {1250 \ln \left (x -1\right ) \ln \relax (x )}{5+4 \,{\mathrm e}}\) | \(334\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 68, normalized size = 2.00 \begin {gather*} -\frac {625 \, {\left (4 \, e^{x} \log \relax (x) - \log \relax (x)^{2} + 2 \, {\left (2 \, e^{x} - \log \relax (x)\right )} \log \left (-x + 1\right ) - \log \left (-x + 1\right )^{2} - 4 \, e^{\left (2 \, x\right )}\right )}}{4 \, e + 5} - \frac {x}{4 \, e + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.46, size = 40, normalized size = 1.18 \begin {gather*} \frac {625\,{\ln \left (\frac {{\mathrm {e}}^{2\,{\mathrm {e}}^x}}{x-x^2}\right )}^2}{4\,\mathrm {e}+5}-\frac {x}{4\,\mathrm {e}+5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________