Optimal. Leaf size=31 \[ \frac {3}{2} \left (x^2-\log \left (\frac {6-e^2}{x}\right )\right )+\frac {\log \left (x^3\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 22, normalized size of antiderivative = 0.71, number of steps used = 6, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {12, 14, 2304} \begin {gather*} \frac {\log \left (x^3\right )}{x}+\frac {3 x^2}{2}+\frac {3 \log (x)}{2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {6+3 x+6 x^3-2 \log \left (x^3\right )}{x^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {3 \left (2+x+2 x^3\right )}{x^2}-\frac {2 \log \left (x^3\right )}{x^2}\right ) \, dx\\ &=\frac {3}{2} \int \frac {2+x+2 x^3}{x^2} \, dx-\int \frac {\log \left (x^3\right )}{x^2} \, dx\\ &=\frac {3}{x}+\frac {\log \left (x^3\right )}{x}+\frac {3}{2} \int \left (\frac {2}{x^2}+\frac {1}{x}+2 x\right ) \, dx\\ &=\frac {3 x^2}{2}+\frac {3 \log (x)}{2}+\frac {\log \left (x^3\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 22, normalized size = 0.71 \begin {gather*} \frac {3 x^2}{2}+\frac {3 \log (x)}{2}+\frac {\log \left (x^3\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 19, normalized size = 0.61 \begin {gather*} \frac {3 \, x^{3} + {\left (x + 2\right )} \log \left (x^{3}\right )}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.46, size = 18, normalized size = 0.58 \begin {gather*} \frac {3}{2} \, x^{2} + \frac {\log \left (x^{3}\right )}{x} + \frac {3}{2} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 19, normalized size = 0.61
method | result | size |
default | \(\frac {\ln \left (x^{3}\right )}{x}+\frac {3 x^{2}}{2}+\frac {3 \ln \relax (x )}{2}\) | \(19\) |
risch | \(\frac {\ln \left (x^{3}\right )}{x}+\frac {3 x^{2}}{2}+\frac {3 \ln \relax (x )}{2}\) | \(19\) |
norman | \(\frac {\frac {3 x^{3}}{2}+\ln \left (x^{3}\right )}{x}+\frac {3 \ln \relax (x )}{2}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 18, normalized size = 0.58 \begin {gather*} \frac {3}{2} \, x^{2} + \frac {\log \left (x^{3}\right )}{x} + \frac {3}{2} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.18, size = 20, normalized size = 0.65 \begin {gather*} \frac {\ln \left (x^3\right )}{2}+\frac {\ln \left (x^3\right )}{x}+\frac {3\,x^2}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 19, normalized size = 0.61 \begin {gather*} \frac {3 x^{2}}{2} + \frac {3 \log {\relax (x )}}{2} + \frac {\log {\left (x^{3} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________