Optimal. Leaf size=28 \[ 4+x-x^2-\frac {e^{2 x} x^2}{\log \left (e^{4 x}\right )}+\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 32, normalized size of antiderivative = 1.14, number of steps used = 7, number of rules used = 4, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {12, 14, 2176, 2194} \begin {gather*} -x^2+x+\frac {e^{2 x}}{8}-\frac {1}{8} e^{2 x} (2 x+1)+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {4+4 x-8 x^2+e^{2 x} \left (-x-2 x^2\right )}{x} \, dx\\ &=\frac {1}{4} \int \left (-e^{2 x} (1+2 x)-\frac {4 \left (-1-x+2 x^2\right )}{x}\right ) \, dx\\ &=-\left (\frac {1}{4} \int e^{2 x} (1+2 x) \, dx\right )-\int \frac {-1-x+2 x^2}{x} \, dx\\ &=-\frac {1}{8} e^{2 x} (1+2 x)+\frac {1}{4} \int e^{2 x} \, dx-\int \left (-1-\frac {1}{x}+2 x\right ) \, dx\\ &=\frac {e^{2 x}}{8}+x-x^2-\frac {1}{8} e^{2 x} (1+2 x)+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 22, normalized size = 0.79 \begin {gather*} \frac {1}{4} \left (-x \left (-4+e^{2 x}+4 x\right )+4 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 16, normalized size = 0.57 \begin {gather*} -x^{2} - \frac {1}{4} \, x e^{\left (2 \, x\right )} + x + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 16, normalized size = 0.57 \begin {gather*} -x^{2} - \frac {1}{4} \, x e^{\left (2 \, x\right )} + x + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 17, normalized size = 0.61
method | result | size |
default | \(-x^{2}+x +\ln \relax (x )-\frac {x \,{\mathrm e}^{2 x}}{4}\) | \(17\) |
norman | \(-x^{2}+x +\ln \relax (x )-\frac {x \,{\mathrm e}^{2 x}}{4}\) | \(17\) |
risch | \(-x^{2}+x +\ln \relax (x )-\frac {x \,{\mathrm e}^{2 x}}{4}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 26, normalized size = 0.93 \begin {gather*} -x^{2} - \frac {1}{8} \, {\left (2 \, x - 1\right )} e^{\left (2 \, x\right )} + x - \frac {1}{8} \, e^{\left (2 \, x\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 16, normalized size = 0.57 \begin {gather*} x+\ln \relax (x)-\frac {x\,{\mathrm {e}}^{2\,x}}{4}-x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 15, normalized size = 0.54 \begin {gather*} - x^{2} - \frac {x e^{2 x}}{4} + x + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________