Optimal. Leaf size=18 \[ 4+e^{6 e^{x (3+3 x)}}-x \]
________________________________________________________________________________________
Rubi [F] time = 0.48, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (-1+e^{6 e^{3 x+3 x^2}+3 x+3 x^2} (18+36 x)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-x+\int e^{6 e^{3 x+3 x^2}+3 x+3 x^2} (18+36 x) \, dx\\ &=-x+\int e^{3 \left (2 e^{3 x (1+x)}+x+x^2\right )} (18+36 x) \, dx\\ &=-x+\int \left (18 e^{3 \left (2 e^{3 x (1+x)}+x+x^2\right )}+36 e^{3 \left (2 e^{3 x (1+x)}+x+x^2\right )} x\right ) \, dx\\ &=-x+18 \int e^{3 \left (2 e^{3 x (1+x)}+x+x^2\right )} \, dx+36 \int e^{3 \left (2 e^{3 x (1+x)}+x+x^2\right )} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 19, normalized size = 1.06 \begin {gather*} e^{6 e^{3 x+3 x^2}}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.66, size = 49, normalized size = 2.72 \begin {gather*} -{\left (x e^{\left (3 \, x^{2} + 3 \, x\right )} - e^{\left (3 \, x^{2} + 3 \, x + 6 \, e^{\left (3 \, x^{2} + 3 \, x\right )}\right )}\right )} e^{\left (-3 \, x^{2} - 3 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 17, normalized size = 0.94 \begin {gather*} -x + e^{\left (6 \, e^{\left (3 \, x^{2} + 3 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 15, normalized size = 0.83
method | result | size |
risch | \(-x +{\mathrm e}^{6 \,{\mathrm e}^{3 \left (x +1\right ) x}}\) | \(15\) |
default | \(-x +{\mathrm e}^{6 \,{\mathrm e}^{3 x^{2}+3 x}}\) | \(18\) |
norman | \(-x +{\mathrm e}^{6 \,{\mathrm e}^{3 x^{2}+3 x}}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 17, normalized size = 0.94 \begin {gather*} -x + e^{\left (6 \, e^{\left (3 \, x^{2} + 3 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 17, normalized size = 0.94 \begin {gather*} {\mathrm {e}}^{6\,{\mathrm {e}}^{3\,x}\,{\mathrm {e}}^{3\,x^2}}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 14, normalized size = 0.78 \begin {gather*} - x + e^{6 e^{3 x^{2} + 3 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________