Optimal. Leaf size=30 \[ \left (4+\log ^2(5)\right ) \left (\frac {4}{x}+x^2-\log \left (-4+\frac {1}{e}-e^x+x\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.86, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {16-8 x^3+e \left (-64+16 x+4 x^2+32 x^3-8 x^4\right )+\left (4-2 x^3+e \left (-16+4 x+x^2+8 x^3-2 x^4\right )\right ) \log ^2(5)+e^x \left (e \left (-16-4 x^2+8 x^3\right )+e \left (-4-x^2+2 x^3\right ) \log ^2(5)\right )}{-x^2+e^{1+x} x^2+e \left (4 x^2-x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (e^{1+x} \left (4+x^2-2 x^3\right )+2 \left (-2+x^3\right )+e \left (16-4 x-x^2-8 x^3+2 x^4\right )\right ) \left (4+\log ^2(5)\right )}{\left (1-e^{1+x}+e (-4+x)\right ) x^2} \, dx\\ &=\left (4+\log ^2(5)\right ) \int \frac {e^{1+x} \left (4+x^2-2 x^3\right )+2 \left (-2+x^3\right )+e \left (16-4 x-x^2-8 x^3+2 x^4\right )}{\left (1-e^{1+x}+e (-4+x)\right ) x^2} \, dx\\ &=\left (4+\log ^2(5)\right ) \int \left (\frac {1-5 e+e x}{1-4 e-e^{1+x}+e x}+\frac {-4-x^2+2 x^3}{x^2}\right ) \, dx\\ &=\left (4+\log ^2(5)\right ) \int \frac {1-5 e+e x}{1-4 e-e^{1+x}+e x} \, dx+\left (4+\log ^2(5)\right ) \int \frac {-4-x^2+2 x^3}{x^2} \, dx\\ &=\left (4+\log ^2(5)\right ) \int \left (-1-\frac {4}{x^2}+2 x\right ) \, dx+\left (4+\log ^2(5)\right ) \int \left (-\frac {1-5 e}{-1+4 e+e^{1+x}-e x}+\frac {e x}{1-4 e-e^{1+x}+e x}\right ) \, dx\\ &=\frac {4 \left (4+\log ^2(5)\right )}{x}-x \left (4+\log ^2(5)\right )+x^2 \left (4+\log ^2(5)\right )-\left ((1-5 e) \left (4+\log ^2(5)\right )\right ) \int \frac {1}{-1+4 e+e^{1+x}-e x} \, dx+\left (e \left (4+\log ^2(5)\right )\right ) \int \frac {x}{1-4 e-e^{1+x}+e x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 34, normalized size = 1.13 \begin {gather*} \left (4+\log ^2(5)\right ) \left (\frac {4}{x}+x^2-\log \left (1-4 e-e^{1+x}+e x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 47, normalized size = 1.57 \begin {gather*} \frac {4 \, x^{3} + {\left (x^{3} + 4\right )} \log \relax (5)^{2} - {\left (x \log \relax (5)^{2} + 4 \, x\right )} \log \left (-{\left (x - 4\right )} e + e^{\left (x + 1\right )} - 1\right ) + 16}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 67, normalized size = 2.23 \begin {gather*} \frac {x^{3} \log \relax (5)^{2} - x \log \relax (5)^{2} \log \left (-x e + 4 \, e + e^{\left (x + 1\right )} - 1\right ) + 4 \, x^{3} + 4 \, \log \relax (5)^{2} - 4 \, x \log \left (-x e + 4 \, e + e^{\left (x + 1\right )} - 1\right ) + 16}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 50, normalized size = 1.67
method | result | size |
norman | \(\frac {\left (4+\ln \relax (5)^{2}\right ) x^{3}+4 \ln \relax (5)^{2}+16}{x}+\left (-\ln \relax (5)^{2}-4\right ) \ln \left (x \,{\mathrm e}-{\mathrm e} \,{\mathrm e}^{x}-4 \,{\mathrm e}+1\right )\) | \(50\) |
risch | \(x^{2} \ln \relax (5)^{2}+4 x^{2}+\frac {4 \ln \relax (5)^{2}}{x}+\frac {16}{x}-\ln \relax (5)^{2} \ln \left ({\mathrm e}^{x}-\left (x \,{\mathrm e}-4 \,{\mathrm e}+1\right ) {\mathrm e}^{-1}\right )-4 \ln \left ({\mathrm e}^{x}-\left (x \,{\mathrm e}-4 \,{\mathrm e}+1\right ) {\mathrm e}^{-1}\right )\) | \(73\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 52, normalized size = 1.73 \begin {gather*} -{\left (\log \relax (5)^{2} + 4\right )} \log \left (-{\left (x e - 4 \, e - e^{\left (x + 1\right )} + 1\right )} e^{\left (-1\right )}\right ) + \frac {{\left (\log \relax (5)^{2} + 4\right )} x^{3} + 4 \, \log \relax (5)^{2} + 16}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.27, size = 41, normalized size = 1.37 \begin {gather*} \frac {\left ({\ln \relax (5)}^2+4\right )\,x^3+4\,{\ln \relax (5)}^2+16}{x}-\ln \left (x+{\mathrm {e}}^{-1}-{\mathrm {e}}^x-4\right )\,\left ({\ln \relax (5)}^2+4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 48, normalized size = 1.60 \begin {gather*} x^{2} \left (\log {\relax (5 )}^{2} + 4\right ) + \left (-4 - \log {\relax (5 )}^{2}\right ) \log {\left (\frac {- e x - 1 + 4 e}{e} + e^{x} \right )} + \frac {4 \log {\relax (5 )}^{2} + 16}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________