Optimal. Leaf size=28 \[ \frac {1}{x \left (4 x+\left (3+3 e^x+x\right ) \left (6-x^2\right )^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 6.90, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-108-80 x+108 x^2+48 x^3-15 x^4-6 x^5+e^x \left (-108-108 x+108 x^2+36 x^3-15 x^4-3 x^5\right )}{11664 x^2+8640 x^3-6176 x^4-5472 x^5+984 x^6+1320 x^7+8 x^8-144 x^9-15 x^{10}+6 x^{11}+x^{12}+e^{2 x} \left (11664 x^2-7776 x^4+1944 x^6-216 x^8+9 x^{10}\right )+e^x \left (23328 x^2+8640 x^3-15552 x^4-5472 x^5+3888 x^6+1320 x^7-432 x^8-144 x^9+18 x^{10}+6 x^{11}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-108-80 x+108 x^2+48 x^3-15 x^4-6 x^5-3 e^x \left (36+36 x-36 x^2-12 x^3+5 x^4+x^5\right )}{x^2 \left (108+40 x-36 x^2-12 x^3+3 x^4+x^5+3 e^x \left (-6+x^2\right )^2\right )^2} \, dx\\ &=\int \left (-\frac {-6-6 x+5 x^2+x^3}{x^2 \left (-6+x^2\right ) \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )}+\frac {-408-240 x+228 x^2+112 x^3-36 x^4-18 x^5+2 x^6+x^7}{x \left (-6+x^2\right ) \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2}\right ) \, dx\\ &=-\int \frac {-6-6 x+5 x^2+x^3}{x^2 \left (-6+x^2\right ) \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )} \, dx+\int \frac {-408-240 x+228 x^2+112 x^3-36 x^4-18 x^5+2 x^6+x^7}{x \left (-6+x^2\right ) \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2} \, dx\\ &=\int \left (\frac {40}{\left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2}+\frac {68}{x \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2}-\frac {24 x}{\left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2}-\frac {12 x^2}{\left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2}+\frac {2 x^3}{\left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2}+\frac {x^4}{\left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2}+\frac {16 x}{\left (-6+x^2\right ) \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2}\right ) \, dx-\int \left (\frac {1}{x^2 \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )}+\frac {1}{x \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )}+\frac {4}{\left (-6+x^2\right ) \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )}\right ) \, dx\\ &=2 \int \frac {x^3}{\left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2} \, dx-4 \int \frac {1}{\left (-6+x^2\right ) \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )} \, dx-12 \int \frac {x^2}{\left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2} \, dx+16 \int \frac {x}{\left (-6+x^2\right ) \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2} \, dx-24 \int \frac {x}{\left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2} \, dx+40 \int \frac {1}{\left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2} \, dx+68 \int \frac {1}{x \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2} \, dx+\int \frac {x^4}{\left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2} \, dx-\int \frac {1}{x^2 \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )} \, dx-\int \frac {1}{x \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )} \, dx\\ &=2 \int \frac {x^3}{\left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2} \, dx-4 \int \left (-\frac {1}{2 \sqrt {6} \left (\sqrt {6}-x\right ) \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )}-\frac {1}{2 \sqrt {6} \left (\sqrt {6}+x\right ) \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )}\right ) \, dx-12 \int \frac {x^2}{\left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2} \, dx+16 \int \left (-\frac {1}{2 \left (\sqrt {6}-x\right ) \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2}+\frac {1}{2 \left (\sqrt {6}+x\right ) \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2}\right ) \, dx-24 \int \frac {x}{\left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2} \, dx+40 \int \frac {1}{\left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2} \, dx+68 \int \frac {1}{x \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2} \, dx+\int \frac {x^4}{\left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2} \, dx-\int \frac {1}{x^2 \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )} \, dx-\int \frac {1}{x \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )} \, dx\\ &=2 \int \frac {x^3}{\left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2} \, dx-8 \int \frac {1}{\left (\sqrt {6}-x\right ) \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2} \, dx+8 \int \frac {1}{\left (\sqrt {6}+x\right ) \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2} \, dx-12 \int \frac {x^2}{\left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2} \, dx-24 \int \frac {x}{\left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2} \, dx+40 \int \frac {1}{\left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2} \, dx+68 \int \frac {1}{x \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2} \, dx+\sqrt {\frac {2}{3}} \int \frac {1}{\left (\sqrt {6}-x\right ) \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )} \, dx+\sqrt {\frac {2}{3}} \int \frac {1}{\left (\sqrt {6}+x\right ) \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )} \, dx+\int \frac {x^4}{\left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )^2} \, dx-\int \frac {1}{x^2 \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )} \, dx-\int \frac {1}{x \left (108+108 e^x+40 x-36 x^2-36 e^x x^2-12 x^3+3 x^4+3 e^x x^4+x^5\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 41, normalized size = 1.46 \begin {gather*} \frac {1}{x \left (108+40 x-36 x^2-12 x^3+3 x^4+x^5+3 e^x \left (-6+x^2\right )^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 45, normalized size = 1.61 \begin {gather*} \frac {1}{x^{6} + 3 \, x^{5} - 12 \, x^{4} - 36 \, x^{3} + 40 \, x^{2} + 3 \, {\left (x^{5} - 12 \, x^{3} + 36 \, x\right )} e^{x} + 108 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 48, normalized size = 1.71 \begin {gather*} \frac {1}{x^{6} + 3 \, x^{5} e^{x} + 3 \, x^{5} - 12 \, x^{4} - 36 \, x^{3} e^{x} - 36 \, x^{3} + 40 \, x^{2} + 108 \, x e^{x} + 108 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 48, normalized size = 1.71
method | result | size |
risch | \(\frac {1}{x \left (3 \,{\mathrm e}^{x} x^{4}+x^{5}+3 x^{4}-36 \,{\mathrm e}^{x} x^{2}-12 x^{3}-36 x^{2}+108 \,{\mathrm e}^{x}+40 x +108\right )}\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 45, normalized size = 1.61 \begin {gather*} \frac {1}{x^{6} + 3 \, x^{5} - 12 \, x^{4} - 36 \, x^{3} + 40 \, x^{2} + 3 \, {\left (x^{5} - 12 \, x^{3} + 36 \, x\right )} e^{x} + 108 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {80\,x+{\mathrm {e}}^x\,\left (3\,x^5+15\,x^4-36\,x^3-108\,x^2+108\,x+108\right )-108\,x^2-48\,x^3+15\,x^4+6\,x^5+108}{{\mathrm {e}}^{2\,x}\,\left (9\,x^{10}-216\,x^8+1944\,x^6-7776\,x^4+11664\,x^2\right )+{\mathrm {e}}^x\,\left (6\,x^{11}+18\,x^{10}-144\,x^9-432\,x^8+1320\,x^7+3888\,x^6-5472\,x^5-15552\,x^4+8640\,x^3+23328\,x^2\right )+11664\,x^2+8640\,x^3-6176\,x^4-5472\,x^5+984\,x^6+1320\,x^7+8\,x^8-144\,x^9-15\,x^{10}+6\,x^{11}+x^{12}} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.48, size = 44, normalized size = 1.57 \begin {gather*} \frac {1}{x^{6} + 3 x^{5} - 12 x^{4} - 36 x^{3} + 40 x^{2} + 108 x + \left (3 x^{5} - 36 x^{3} + 108 x\right ) e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________