Optimal. Leaf size=31 \[ \frac {1}{3} \left (4-e^{e^{2 x}-x}+x^2+\frac {25 x^2}{\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.40, antiderivative size = 34, normalized size of antiderivative = 1.10, number of steps used = 15, number of rules used = 8, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.163, Rules used = {12, 6742, 2282, 2214, 2204, 2306, 2309, 2178} \begin {gather*} \frac {x^2}{3}+\frac {25 x^2}{3 \log (x)}-\frac {1}{3} e^{e^{2 x}-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2204
Rule 2214
Rule 2282
Rule 2306
Rule 2309
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {-25 x+50 x \log (x)+e^{e^{2 x}-x} \left (1-2 e^{2 x}\right ) \log ^2(x)+2 x \log ^2(x)}{\log ^2(x)} \, dx\\ &=\frac {1}{3} \int \left (e^{e^{2 x}-x}-2 e^{e^{2 x}+x}+\frac {x \left (-25+50 \log (x)+2 \log ^2(x)\right )}{\log ^2(x)}\right ) \, dx\\ &=\frac {1}{3} \int e^{e^{2 x}-x} \, dx+\frac {1}{3} \int \frac {x \left (-25+50 \log (x)+2 \log ^2(x)\right )}{\log ^2(x)} \, dx-\frac {2}{3} \int e^{e^{2 x}+x} \, dx\\ &=\frac {1}{3} \int \left (2 x-\frac {25 x}{\log ^2(x)}+\frac {50 x}{\log (x)}\right ) \, dx+\frac {1}{3} \operatorname {Subst}\left (\int \frac {e^{x^2}}{x^2} \, dx,x,e^x\right )-\frac {2}{3} \operatorname {Subst}\left (\int e^{x^2} \, dx,x,e^x\right )\\ &=-\frac {1}{3} e^{e^{2 x}-x}+\frac {x^2}{3}-\frac {1}{3} \sqrt {\pi } \text {erfi}\left (e^x\right )+\frac {2}{3} \operatorname {Subst}\left (\int e^{x^2} \, dx,x,e^x\right )-\frac {25}{3} \int \frac {x}{\log ^2(x)} \, dx+\frac {50}{3} \int \frac {x}{\log (x)} \, dx\\ &=-\frac {1}{3} e^{e^{2 x}-x}+\frac {x^2}{3}+\frac {25 x^2}{3 \log (x)}-\frac {50}{3} \int \frac {x}{\log (x)} \, dx+\frac {50}{3} \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=-\frac {1}{3} e^{e^{2 x}-x}+\frac {x^2}{3}+\frac {50}{3} \text {Ei}(2 \log (x))+\frac {25 x^2}{3 \log (x)}-\frac {50}{3} \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=-\frac {1}{3} e^{e^{2 x}-x}+\frac {x^2}{3}+\frac {25 x^2}{3 \log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.53, size = 30, normalized size = 0.97 \begin {gather*} \frac {1}{3} \left (-e^{e^{2 x}-x}+x^2+\frac {25 x^2}{\log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 31, normalized size = 1.00 \begin {gather*} \frac {x^{2} \log \relax (x) + 25 \, x^{2} - e^{\left (-x + e^{\left (2 \, x\right )}\right )} \log \relax (x)}{3 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 41, normalized size = 1.32 \begin {gather*} \frac {{\left (x^{2} e^{\left (2 \, x\right )} \log \relax (x) + 25 \, x^{2} e^{\left (2 \, x\right )} - e^{\left (x + e^{\left (2 \, x\right )}\right )} \log \relax (x)\right )} e^{\left (-2 \, x\right )}}{3 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 27, normalized size = 0.87
method | result | size |
default | \(\frac {x^{2}}{3}+\frac {25 x^{2}}{3 \ln \relax (x )}-\frac {{\mathrm e}^{{\mathrm e}^{2 x}} {\mathrm e}^{-x}}{3}\) | \(27\) |
risch | \(\frac {x^{2}}{3}+\frac {25 x^{2}}{3 \ln \relax (x )}-\frac {{\mathrm e}^{{\mathrm e}^{2 x}-x}}{3}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 33, normalized size = 1.06 \begin {gather*} \frac {1}{3} \, x^{2} + \frac {{\left (25 \, x^{2} e^{x} - e^{\left (e^{\left (2 \, x\right )}\right )} \log \relax (x)\right )} e^{\left (-x\right )}}{3 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.21, size = 26, normalized size = 0.84 \begin {gather*} \frac {25\,x^2}{3\,\ln \relax (x)}-\frac {{\mathrm {e}}^{{\mathrm {e}}^{2\,x}-x}}{3}+\frac {x^2}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 24, normalized size = 0.77 \begin {gather*} \frac {x^{2}}{3} + \frac {25 x^{2}}{3 \log {\relax (x )}} - \frac {e^{- x + e^{2 x}}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________