Optimal. Leaf size=26 \[ 4 e^{2 x}-\frac {16 x^2}{\left (\frac {25-x}{3}+x\right )^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.20, antiderivative size = 20, normalized size of antiderivative = 0.77, number of steps used = 6, number of rules used = 5, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.116, Rules used = {6688, 12, 6742, 2194, 37} \begin {gather*} 4 e^{2 x}-\frac {144 x^2}{(2 x+25)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 37
Rule 2194
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 \left (-900 x+e^{2 x} (25+2 x)^3\right )}{(25+2 x)^3} \, dx\\ &=8 \int \frac {-900 x+e^{2 x} (25+2 x)^3}{(25+2 x)^3} \, dx\\ &=8 \int \left (e^{2 x}-\frac {900 x}{(25+2 x)^3}\right ) \, dx\\ &=8 \int e^{2 x} \, dx-7200 \int \frac {x}{(25+2 x)^3} \, dx\\ &=4 e^{2 x}-\frac {144 x^2}{(25+2 x)^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 24, normalized size = 0.92 \begin {gather*} 8 \left (\frac {e^{2 x}}{2}-\frac {18 x^2}{(25+2 x)^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 34, normalized size = 1.31 \begin {gather*} \frac {4 \, {\left ({\left (4 \, x^{2} + 100 \, x + 625\right )} e^{\left (2 \, x\right )} + 900 \, x + 5625\right )}}{4 \, x^{2} + 100 \, x + 625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 41, normalized size = 1.58 \begin {gather*} \frac {4 \, {\left (4 \, x^{2} e^{\left (2 \, x\right )} + 100 \, x e^{\left (2 \, x\right )} + 900 \, x + 625 \, e^{\left (2 \, x\right )} + 5625\right )}}{4 \, x^{2} + 100 \, x + 625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 24, normalized size = 0.92
method | result | size |
risch | \(\frac {900 x +5625}{x^{2}+25 x +\frac {625}{4}}+4 \,{\mathrm e}^{2 x}\) | \(24\) |
default | \(-\frac {22500}{\left (2 x +25\right )^{2}}+\frac {1800}{2 x +25}+4 \,{\mathrm e}^{2 x}\) | \(26\) |
norman | \(\frac {3600 x +2500 \,{\mathrm e}^{2 x}+400 x \,{\mathrm e}^{2 x}+16 \,{\mathrm e}^{2 x} x^{2}+22500}{\left (2 x +25\right )^{2}}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {8 \, {\left (4 \, x^{3} + 150 \, x^{2} + 1875 \, x\right )} e^{\left (2 \, x\right )}}{8 \, x^{3} + 300 \, x^{2} + 3750 \, x + 15625} + \frac {900 \, {\left (4 \, x + 25\right )}}{4 \, x^{2} + 100 \, x + 625} - \frac {62500 \, e^{\left (-25\right )} E_{3}\left (-2 \, x - 25\right )}{{\left (2 \, x + 25\right )}^{2}} - 375000 \, \int \frac {e^{\left (2 \, x\right )}}{16 \, x^{4} + 800 \, x^{3} + 15000 \, x^{2} + 125000 \, x + 390625}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 20, normalized size = 0.77 \begin {gather*} 4\,{\mathrm {e}}^{2\,x}+\frac {3600\,x+22500}{{\left (2\,x+25\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 22, normalized size = 0.85 \begin {gather*} - \frac {7200 \left (- 4 x - 25\right )}{32 x^{2} + 800 x + 5000} + 4 e^{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________