Optimal. Leaf size=19 \[ \frac {x}{\left (-1+e^{-e^{5+x}} x^2\right )^4} \]
________________________________________________________________________________________
Rubi [F] time = 2.33, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{5 e^{5+x}}+e^{4 e^{5+x}} \left (7 x^2-4 e^{5+x} x^3\right )}{e^{5 e^{5+x}}-5 e^{4 e^{5+x}} x^2+10 e^{3 e^{5+x}} x^4-10 e^{2 e^{5+x}} x^6+5 e^{e^{5+x}} x^8-x^{10}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{4 e^{5+x}} \left (e^{e^{5+x}}+7 x^2-4 e^{5+x} x^3\right )}{\left (e^{e^{5+x}}-x^2\right )^5} \, dx\\ &=\int \left (\frac {4 e^{5+4 e^{5+x}+x} x^3}{\left (-e^{e^{5+x}}+x^2\right )^5}+\frac {e^{4 e^{5+x}} \left (e^{e^{5+x}}+7 x^2\right )}{\left (e^{e^{5+x}}-x^2\right )^5}\right ) \, dx\\ &=4 \int \frac {e^{5+4 e^{5+x}+x} x^3}{\left (-e^{e^{5+x}}+x^2\right )^5} \, dx+\int \frac {e^{4 e^{5+x}} \left (e^{e^{5+x}}+7 x^2\right )}{\left (e^{e^{5+x}}-x^2\right )^5} \, dx\\ &=4 \int \frac {e^{5+4 e^{5+x}+x} x^3}{\left (-e^{e^{5+x}}+x^2\right )^5} \, dx+\int \left (\frac {e^{4 e^{5+x}}}{\left (e^{e^{5+x}}-x^2\right )^4}-\frac {8 e^{4 e^{5+x}} x^2}{\left (-e^{e^{5+x}}+x^2\right )^5}\right ) \, dx\\ &=4 \int \frac {e^{5+4 e^{5+x}+x} x^3}{\left (-e^{e^{5+x}}+x^2\right )^5} \, dx-8 \int \frac {e^{4 e^{5+x}} x^2}{\left (-e^{e^{5+x}}+x^2\right )^5} \, dx+\int \frac {e^{4 e^{5+x}}}{\left (e^{e^{5+x}}-x^2\right )^4} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.45, size = 26, normalized size = 1.37 \begin {gather*} \frac {e^{4 e^{5+x}} x}{\left (e^{e^{5+x}}-x^2\right )^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.69, size = 56, normalized size = 2.95 \begin {gather*} \frac {x e^{\left (4 \, e^{\left (x + 5\right )}\right )}}{x^{8} - 4 \, x^{6} e^{\left (e^{\left (x + 5\right )}\right )} + 6 \, x^{4} e^{\left (2 \, e^{\left (x + 5\right )}\right )} - 4 \, x^{2} e^{\left (3 \, e^{\left (x + 5\right )}\right )} + e^{\left (4 \, e^{\left (x + 5\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.35, size = 56, normalized size = 2.95 \begin {gather*} \frac {x e^{\left (4 \, e^{\left (x + 5\right )}\right )}}{x^{8} - 4 \, x^{6} e^{\left (e^{\left (x + 5\right )}\right )} + 6 \, x^{4} e^{\left (2 \, e^{\left (x + 5\right )}\right )} - 4 \, x^{2} e^{\left (3 \, e^{\left (x + 5\right )}\right )} + e^{\left (4 \, e^{\left (x + 5\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 56, normalized size = 2.95
method | result | size |
risch | \(x -\frac {\left (x^{6}-4 x^{4} {\mathrm e}^{{\mathrm e}^{5+x}}+6 x^{2} {\mathrm e}^{2 \,{\mathrm e}^{5+x}}-4 \,{\mathrm e}^{3 \,{\mathrm e}^{5+x}}\right ) x^{3}}{\left (x^{2}-{\mathrm e}^{{\mathrm e}^{5+x}}\right )^{4}}\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.74, size = 56, normalized size = 2.95 \begin {gather*} \frac {x e^{\left (4 \, e^{\left (x + 5\right )}\right )}}{x^{8} - 4 \, x^{6} e^{\left (e^{\left (x + 5\right )}\right )} + 6 \, x^{4} e^{\left (2 \, e^{\left (x + 5\right )}\right )} - 4 \, x^{2} e^{\left (3 \, e^{\left (x + 5\right )}\right )} + e^{\left (4 \, e^{\left (x + 5\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.38, size = 250, normalized size = 13.16 \begin {gather*} x-\frac {6\,\left (x^7\,{\mathrm {e}}^{x+5}-2\,x^6\right )}{\left (2\,x-x^2\,{\mathrm {e}}^{x+5}\right )\,\left ({\mathrm {e}}^{2\,{\mathrm {e}}^5\,{\mathrm {e}}^x}-2\,x^2\,{\mathrm {e}}^{{\mathrm {e}}^5\,{\mathrm {e}}^x}+x^4\right )}-\frac {4\,\left (x^5\,{\mathrm {e}}^{x+5}-2\,x^4\right )}{\left ({\mathrm {e}}^{{\mathrm {e}}^5\,{\mathrm {e}}^x}-x^2\right )\,\left (2\,x-x^2\,{\mathrm {e}}^{x+5}\right )}-\frac {x^{11}\,{\mathrm {e}}^{x+5}-2\,x^{10}}{\left (2\,x-x^2\,{\mathrm {e}}^{x+5}\right )\,\left ({\mathrm {e}}^{4\,{\mathrm {e}}^5\,{\mathrm {e}}^x}-4\,x^2\,{\mathrm {e}}^{3\,{\mathrm {e}}^5\,{\mathrm {e}}^x}+6\,x^4\,{\mathrm {e}}^{2\,{\mathrm {e}}^5\,{\mathrm {e}}^x}-4\,x^6\,{\mathrm {e}}^{{\mathrm {e}}^5\,{\mathrm {e}}^x}+x^8\right )}-\frac {4\,\left (x^9\,{\mathrm {e}}^{x+5}-2\,x^8\right )}{\left (2\,x-x^2\,{\mathrm {e}}^{x+5}\right )\,\left ({\mathrm {e}}^{3\,{\mathrm {e}}^5\,{\mathrm {e}}^x}-3\,x^2\,{\mathrm {e}}^{2\,{\mathrm {e}}^5\,{\mathrm {e}}^x}+3\,x^4\,{\mathrm {e}}^{{\mathrm {e}}^5\,{\mathrm {e}}^x}-x^6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.24, size = 105, normalized size = 5.53 \begin {gather*} x + \frac {- x^{9} + 4 x^{7} e^{e^{5} e^{x}} - 6 x^{5} e^{2 e^{5} e^{x}} + 4 x^{3} e^{3 e^{5} e^{x}}}{x^{8} - 4 x^{6} e^{e^{5} e^{x}} + 6 x^{4} e^{2 e^{5} e^{x}} - 4 x^{2} e^{3 e^{5} e^{x}} + e^{4 e^{5} e^{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________