Optimal. Leaf size=25 \[ \frac {1}{5} e^{\left (4+\log \left (\frac {3 x}{4+x+\frac {\log (4)}{5}}\right )\right )^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.33, antiderivative size = 63, normalized size of antiderivative = 2.52, number of steps used = 5, number of rules used = 5, integrand size = 75, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {6, 12, 1584, 21, 2288} \begin {gather*} -\frac {512578125 x^8 (20+\log (4)) e^{\log ^2\left (\frac {15 x}{5 x+20+\log (4)}\right )+16}}{(5 x+20+\log (4))^{10} \left (\frac {5 x}{(5 x+20+\log (4))^2}-\frac {1}{5 x+20+\log (4)}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 21
Rule 1584
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2562890625 e^{16+\log ^2\left (\frac {15 x}{20+5 x+\log (4)}\right )} x^8 \left (160+8 \log (4)+(40+2 \log (4)) \log \left (\frac {15 x}{20+5 x+\log (4)}\right )\right )}{(20+5 x+\log (4))^8 \left (25 x^2+x (100+5 \log (4))\right )} \, dx\\ &=2562890625 \int \frac {e^{16+\log ^2\left (\frac {15 x}{20+5 x+\log (4)}\right )} x^8 \left (160+8 \log (4)+(40+2 \log (4)) \log \left (\frac {15 x}{20+5 x+\log (4)}\right )\right )}{(20+5 x+\log (4))^8 \left (25 x^2+x (100+5 \log (4))\right )} \, dx\\ &=2562890625 \int \frac {e^{16+\log ^2\left (\frac {15 x}{20+5 x+\log (4)}\right )} x^7 \left (160+8 \log (4)+(40+2 \log (4)) \log \left (\frac {15 x}{20+5 x+\log (4)}\right )\right )}{(20+5 x+\log (4))^8 (100+25 x+5 \log (4))} \, dx\\ &=512578125 \int \frac {e^{16+\log ^2\left (\frac {15 x}{20+5 x+\log (4)}\right )} x^7 \left (160+8 \log (4)+(40+2 \log (4)) \log \left (\frac {15 x}{20+5 x+\log (4)}\right )\right )}{(20+5 x+\log (4))^9} \, dx\\ &=-\frac {512578125 e^{16+\log ^2\left (\frac {15 x}{20+5 x+\log (4)}\right )} x^8 (20+\log (4))}{(20+5 x+\log (4))^{10} \left (\frac {5 x}{(20+5 x+\log (4))^2}-\frac {1}{20+5 x+\log (4)}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 33, normalized size = 1.32 \begin {gather*} \frac {512578125 e^{16+\log ^2\left (\frac {15 x}{20+5 x+\log (4)}\right )} x^8}{(20+5 x+\log (4))^8} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 39, normalized size = 1.56 \begin {gather*} \frac {1}{5} \, e^{\left (\log \left (\frac {15 \, x}{5 \, x + 2 \, \log \relax (2) + 20}\right )^{2} + 8 \, \log \left (\frac {15 \, x}{5 \, x + 2 \, \log \relax (2) + 20}\right ) + 16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.44, size = 39, normalized size = 1.56 \begin {gather*} \frac {1}{5} \, e^{\left (\log \left (\frac {15 \, x}{5 \, x + 2 \, \log \relax (2) + 20}\right )^{2} + 8 \, \log \left (\frac {15 \, x}{5 \, x + 2 \, \log \relax (2) + 20}\right ) + 16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 37, normalized size = 1.48
method | result | size |
risch | \(\frac {512578125 x^{8} {\mathrm e}^{\ln \left (\frac {15 x}{2 \ln \relax (2)+20+5 x}\right )^{2}+16}}{\left (2 \ln \relax (2)+20+5 x \right )^{8}}\) | \(37\) |
norman | \(\frac {{\mathrm e}^{\ln \left (\frac {15 x}{2 \ln \relax (2)+20+5 x}\right )^{2}+8 \ln \left (\frac {15 x}{2 \ln \relax (2)+20+5 x}\right )+16}}{5}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.81, size = 336, normalized size = 13.44 \begin {gather*} \frac {78125 \cdot 3^{2 \, \log \relax (5) + 8} x^{8} e^{\left (\log \relax (5)^{2} + \log \relax (3)^{2} - 2 \, \log \relax (5) \log \left (5 \, x + 2 \, \log \relax (2) + 20\right ) - 2 \, \log \relax (3) \log \left (5 \, x + 2 \, \log \relax (2) + 20\right ) + \log \left (5 \, x + 2 \, \log \relax (2) + 20\right )^{2} + 2 \, \log \relax (5) \log \relax (x) + 2 \, \log \relax (3) \log \relax (x) - 2 \, \log \left (5 \, x + 2 \, \log \relax (2) + 20\right ) \log \relax (x) + \log \relax (x)^{2} + 16\right )}}{390625 \, x^{8} + 1250000 \, x^{7} {\left (\log \relax (2) + 10\right )} + 256 \, \log \relax (2)^{8} + 1750000 \, {\left (\log \relax (2)^{2} + 20 \, \log \relax (2) + 100\right )} x^{6} + 20480 \, \log \relax (2)^{7} + 1400000 \, {\left (\log \relax (2)^{3} + 30 \, \log \relax (2)^{2} + 300 \, \log \relax (2) + 1000\right )} x^{5} + 716800 \, \log \relax (2)^{6} + 700000 \, {\left (\log \relax (2)^{4} + 40 \, \log \relax (2)^{3} + 600 \, \log \relax (2)^{2} + 4000 \, \log \relax (2) + 10000\right )} x^{4} + 14336000 \, \log \relax (2)^{5} + 224000 \, {\left (\log \relax (2)^{5} + 50 \, \log \relax (2)^{4} + 1000 \, \log \relax (2)^{3} + 10000 \, \log \relax (2)^{2} + 50000 \, \log \relax (2) + 100000\right )} x^{3} + 179200000 \, \log \relax (2)^{4} + 44800 \, {\left (\log \relax (2)^{6} + 60 \, \log \relax (2)^{5} + 1500 \, \log \relax (2)^{4} + 20000 \, \log \relax (2)^{3} + 150000 \, \log \relax (2)^{2} + 600000 \, \log \relax (2) + 1000000\right )} x^{2} + 1433600000 \, \log \relax (2)^{3} + 5120 \, {\left (\log \relax (2)^{7} + 70 \, \log \relax (2)^{6} + 2100 \, \log \relax (2)^{5} + 35000 \, \log \relax (2)^{4} + 350000 \, \log \relax (2)^{3} + 2100000 \, \log \relax (2)^{2} + 7000000 \, \log \relax (2) + 10000000\right )} x + 7168000000 \, \log \relax (2)^{2} + 20480000000 \, \log \relax (2) + 25600000000} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.41, size = 49, normalized size = 1.96 \begin {gather*} \frac {512578125\,x^8\,{\mathrm {e}}^{{\ln \left (\frac {x}{5\,x+\ln \relax (4)+20}\right )}^2+{\ln \left (15\right )}^2+16}\,{\left (\frac {x}{5\,x+\ln \relax (4)+20}\right )}^{\ln \left (225\right )}}{{\left (5\,x+\ln \relax (4)+20\right )}^8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 3.08, size = 379, normalized size = 15.16 \begin {gather*} \frac {512578125 x^{8} e^{\log {\left (\frac {15 x}{5 x + 2 \log {\relax (2 )} + 20} \right )}^{2} + 16}}{390625 x^{8} + 1250000 x^{7} \log {\relax (2 )} + 12500000 x^{7} + 1750000 x^{6} \log {\relax (2 )}^{2} + 35000000 x^{6} \log {\relax (2 )} + 175000000 x^{6} + 1400000 x^{5} \log {\relax (2 )}^{3} + 42000000 x^{5} \log {\relax (2 )}^{2} + 420000000 x^{5} \log {\relax (2 )} + 1400000000 x^{5} + 700000 x^{4} \log {\relax (2 )}^{4} + 28000000 x^{4} \log {\relax (2 )}^{3} + 420000000 x^{4} \log {\relax (2 )}^{2} + 2800000000 x^{4} \log {\relax (2 )} + 7000000000 x^{4} + 224000 x^{3} \log {\relax (2 )}^{5} + 11200000 x^{3} \log {\relax (2 )}^{4} + 224000000 x^{3} \log {\relax (2 )}^{3} + 2240000000 x^{3} \log {\relax (2 )}^{2} + 11200000000 x^{3} \log {\relax (2 )} + 22400000000 x^{3} + 44800 x^{2} \log {\relax (2 )}^{6} + 2688000 x^{2} \log {\relax (2 )}^{5} + 67200000 x^{2} \log {\relax (2 )}^{4} + 896000000 x^{2} \log {\relax (2 )}^{3} + 6720000000 x^{2} \log {\relax (2 )}^{2} + 26880000000 x^{2} \log {\relax (2 )} + 44800000000 x^{2} + 5120 x \log {\relax (2 )}^{7} + 358400 x \log {\relax (2 )}^{6} + 10752000 x \log {\relax (2 )}^{5} + 179200000 x \log {\relax (2 )}^{4} + 1792000000 x \log {\relax (2 )}^{3} + 10752000000 x \log {\relax (2 )}^{2} + 35840000000 x \log {\relax (2 )} + 51200000000 x + 256 \log {\relax (2 )}^{8} + 20480 \log {\relax (2 )}^{7} + 716800 \log {\relax (2 )}^{6} + 14336000 \log {\relax (2 )}^{5} + 179200000 \log {\relax (2 )}^{4} + 1433600000 \log {\relax (2 )}^{3} + 7168000000 \log {\relax (2 )}^{2} + 20480000000 \log {\relax (2 )} + 25600000000} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________