3.70.6 \(\int \frac {8+16 x+96 x^2+128 x^3+2 \log (x^2)}{4 x^2+16 x^3+80 x^4+192 x^5+384 x^6+512 x^7+256 x^8+(4 x^2+8 x^3+32 x^4+32 x^5) \log (x^2)+x^2 \log ^2(x^2)} \, dx\)

Optimal. Leaf size=27 \[ \frac {2}{-2 x-x^2 (2+4 x)^2-x \log \left (x^2\right )} \]

________________________________________________________________________________________

Rubi [A]  time = 0.49, antiderivative size = 26, normalized size of antiderivative = 0.96, number of steps used = 3, number of rules used = 3, integrand size = 96, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.031, Rules used = {6688, 12, 6687} \begin {gather*} -\frac {2}{x \left (16 x^3+16 x^2+\log \left (x^2\right )+4 x+2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(8 + 16*x + 96*x^2 + 128*x^3 + 2*Log[x^2])/(4*x^2 + 16*x^3 + 80*x^4 + 192*x^5 + 384*x^6 + 512*x^7 + 256*x^
8 + (4*x^2 + 8*x^3 + 32*x^4 + 32*x^5)*Log[x^2] + x^2*Log[x^2]^2),x]

[Out]

-2/(x*(2 + 4*x + 16*x^2 + 16*x^3 + Log[x^2]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6687

Int[(u_)*(y_)^(m_.)*(z_)^(n_.), x_Symbol] :> With[{q = DerivativeDivides[y*z, u*z^(n - m), x]}, Simp[(q*y^(m +
 1)*z^(m + 1))/(m + 1), x] /;  !FalseQ[q]] /; FreeQ[{m, n}, x] && NeQ[m, -1]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (4+8 x+48 x^2+64 x^3+\log \left (x^2\right )\right )}{x^2 \left (2+4 x+16 x^2+16 x^3+\log \left (x^2\right )\right )^2} \, dx\\ &=2 \int \frac {4+8 x+48 x^2+64 x^3+\log \left (x^2\right )}{x^2 \left (2+4 x+16 x^2+16 x^3+\log \left (x^2\right )\right )^2} \, dx\\ &=-\frac {2}{x \left (2+4 x+16 x^2+16 x^3+\log \left (x^2\right )\right )}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.68, size = 26, normalized size = 0.96 \begin {gather*} -\frac {2}{x \left (2+4 x+16 x^2+16 x^3+\log \left (x^2\right )\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(8 + 16*x + 96*x^2 + 128*x^3 + 2*Log[x^2])/(4*x^2 + 16*x^3 + 80*x^4 + 192*x^5 + 384*x^6 + 512*x^7 +
256*x^8 + (4*x^2 + 8*x^3 + 32*x^4 + 32*x^5)*Log[x^2] + x^2*Log[x^2]^2),x]

[Out]

-2/(x*(2 + 4*x + 16*x^2 + 16*x^3 + Log[x^2]))

________________________________________________________________________________________

fricas [A]  time = 0.75, size = 29, normalized size = 1.07 \begin {gather*} -\frac {2}{16 \, x^{4} + 16 \, x^{3} + 4 \, x^{2} + x \log \left (x^{2}\right ) + 2 \, x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*log(x^2)+128*x^3+96*x^2+16*x+8)/(x^2*log(x^2)^2+(32*x^5+32*x^4+8*x^3+4*x^2)*log(x^2)+256*x^8+512*
x^7+384*x^6+192*x^5+80*x^4+16*x^3+4*x^2),x, algorithm="fricas")

[Out]

-2/(16*x^4 + 16*x^3 + 4*x^2 + x*log(x^2) + 2*x)

________________________________________________________________________________________

giac [A]  time = 0.30, size = 29, normalized size = 1.07 \begin {gather*} -\frac {2}{16 \, x^{4} + 16 \, x^{3} + 4 \, x^{2} + x \log \left (x^{2}\right ) + 2 \, x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*log(x^2)+128*x^3+96*x^2+16*x+8)/(x^2*log(x^2)^2+(32*x^5+32*x^4+8*x^3+4*x^2)*log(x^2)+256*x^8+512*
x^7+384*x^6+192*x^5+80*x^4+16*x^3+4*x^2),x, algorithm="giac")

[Out]

-2/(16*x^4 + 16*x^3 + 4*x^2 + x*log(x^2) + 2*x)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 27, normalized size = 1.00




method result size



risch \(-\frac {2}{x \left (16 x^{3}+16 x^{2}+\ln \left (x^{2}\right )+4 x +2\right )}\) \(27\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*ln(x^2)+128*x^3+96*x^2+16*x+8)/(x^2*ln(x^2)^2+(32*x^5+32*x^4+8*x^3+4*x^2)*ln(x^2)+256*x^8+512*x^7+384*x
^6+192*x^5+80*x^4+16*x^3+4*x^2),x,method=_RETURNVERBOSE)

[Out]

-2/x/(16*x^3+16*x^2+ln(x^2)+4*x+2)

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 25, normalized size = 0.93 \begin {gather*} -\frac {1}{8 \, x^{4} + 8 \, x^{3} + 2 \, x^{2} + x \log \relax (x) + x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*log(x^2)+128*x^3+96*x^2+16*x+8)/(x^2*log(x^2)^2+(32*x^5+32*x^4+8*x^3+4*x^2)*log(x^2)+256*x^8+512*
x^7+384*x^6+192*x^5+80*x^4+16*x^3+4*x^2),x, algorithm="maxima")

[Out]

-1/(8*x^4 + 8*x^3 + 2*x^2 + x*log(x) + x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {16\,x+2\,\ln \left (x^2\right )+96\,x^2+128\,x^3+8}{4\,x^2+16\,x^3+80\,x^4+192\,x^5+384\,x^6+512\,x^7+256\,x^8+x^2\,{\ln \left (x^2\right )}^2+\ln \left (x^2\right )\,\left (32\,x^5+32\,x^4+8\,x^3+4\,x^2\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((16*x + 2*log(x^2) + 96*x^2 + 128*x^3 + 8)/(4*x^2 + 16*x^3 + 80*x^4 + 192*x^5 + 384*x^6 + 512*x^7 + 256*x^
8 + x^2*log(x^2)^2 + log(x^2)*(4*x^2 + 8*x^3 + 32*x^4 + 32*x^5)),x)

[Out]

int((16*x + 2*log(x^2) + 96*x^2 + 128*x^3 + 8)/(4*x^2 + 16*x^3 + 80*x^4 + 192*x^5 + 384*x^6 + 512*x^7 + 256*x^
8 + x^2*log(x^2)^2 + log(x^2)*(4*x^2 + 8*x^3 + 32*x^4 + 32*x^5)), x)

________________________________________________________________________________________

sympy [A]  time = 0.14, size = 27, normalized size = 1.00 \begin {gather*} - \frac {2}{16 x^{4} + 16 x^{3} + 4 x^{2} + x \log {\left (x^{2} \right )} + 2 x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*ln(x**2)+128*x**3+96*x**2+16*x+8)/(x**2*ln(x**2)**2+(32*x**5+32*x**4+8*x**3+4*x**2)*ln(x**2)+256*
x**8+512*x**7+384*x**6+192*x**5+80*x**4+16*x**3+4*x**2),x)

[Out]

-2/(16*x**4 + 16*x**3 + 4*x**2 + x*log(x**2) + 2*x)

________________________________________________________________________________________