Optimal. Leaf size=26 \[ x \log \left (\frac {\log \left (x-\frac {x^3}{\left (-e^x+x\right )^2}\right )}{\log (\log (x))}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 6.59, antiderivative size = 31, normalized size of antiderivative = 1.19, number of steps used = 17, number of rules used = 3, integrand size = 245, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.012, Rules used = {6688, 6742, 2549} \begin {gather*} x \log \left (\frac {\log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}{\log (\log (x))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2549
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^{2 x}-3 e^x x+2 x^3}{\left (e^{2 x}-3 e^x x+2 x^2\right ) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}-\frac {1}{\log (x) \log (\log (x))}+\log \left (\frac {\log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}{\log (\log (x))}\right )\right ) \, dx\\ &=\int \frac {e^{2 x}-3 e^x x+2 x^3}{\left (e^{2 x}-3 e^x x+2 x^2\right ) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )} \, dx-\int \frac {1}{\log (x) \log (\log (x))} \, dx+\int \log \left (\frac {\log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}{\log (\log (x))}\right ) \, dx\\ &=x \log \left (\frac {\log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}{\log (\log (x))}\right )+\int \left (\frac {1}{\log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}+\frac {2 (-1+x) x}{\left (e^x-2 x\right ) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}-\frac {2 (-1+x) x}{\left (e^x-x\right ) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}\right ) \, dx-\int \frac {\frac {e^{2 x}-3 e^x x+2 x^3}{\log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}-\frac {e^{2 x}-3 e^x x+2 x^2}{\log (x) \log (\log (x))}}{\left (-e^x+x\right ) \left (-e^x+2 x\right )} \, dx-\int \frac {1}{\log (x) \log (\log (x))} \, dx\\ &=x \log \left (\frac {\log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}{\log (\log (x))}\right )+2 \int \frac {(-1+x) x}{\left (e^x-2 x\right ) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )} \, dx-2 \int \frac {(-1+x) x}{\left (e^x-x\right ) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )} \, dx+\int \frac {1}{\log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )} \, dx-\int \frac {1}{\log (x) \log (\log (x))} \, dx-\int \left (\frac {2 (-1+x) x}{\left (e^x-2 x\right ) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}-\frac {2 (-1+x) x}{\left (e^x-x\right ) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}+\frac {-\log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )+\log (x) \log (\log (x))}{\log (x) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right ) \log (\log (x))}\right ) \, dx\\ &=x \log \left (\frac {\log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}{\log (\log (x))}\right )+2 \int \left (-\frac {x}{\left (e^x-2 x\right ) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}+\frac {x^2}{\left (e^x-2 x\right ) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}\right ) \, dx-2 \int \left (-\frac {x}{\left (e^x-x\right ) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}+\frac {x^2}{\left (e^x-x\right ) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}\right ) \, dx-2 \int \frac {(-1+x) x}{\left (e^x-2 x\right ) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )} \, dx+2 \int \frac {(-1+x) x}{\left (e^x-x\right ) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )} \, dx+\int \frac {1}{\log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )} \, dx-\int \frac {1}{\log (x) \log (\log (x))} \, dx-\int \frac {-\log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )+\log (x) \log (\log (x))}{\log (x) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right ) \log (\log (x))} \, dx\\ &=x \log \left (\frac {\log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}{\log (\log (x))}\right )-2 \int \left (-\frac {x}{\left (e^x-2 x\right ) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}+\frac {x^2}{\left (e^x-2 x\right ) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}\right ) \, dx+2 \int \left (-\frac {x}{\left (e^x-x\right ) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}+\frac {x^2}{\left (e^x-x\right ) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}\right ) \, dx-2 \int \frac {x}{\left (e^x-2 x\right ) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )} \, dx+2 \int \frac {x}{\left (e^x-x\right ) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )} \, dx+2 \int \frac {x^2}{\left (e^x-2 x\right ) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )} \, dx-2 \int \frac {x^2}{\left (e^x-x\right ) \log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )} \, dx+\int \frac {1}{\log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )} \, dx-\int \left (\frac {1}{\log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}-\frac {1}{\log (x) \log (\log (x))}\right ) \, dx-\int \frac {1}{\log (x) \log (\log (x))} \, dx\\ &=x \log \left (\frac {\log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}{\log (\log (x))}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.74, size = 31, normalized size = 1.19 \begin {gather*} x \log \left (\frac {\log \left (\frac {e^x \left (e^x-2 x\right ) x}{\left (e^x-x\right )^2}\right )}{\log (\log (x))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.28, size = 42, normalized size = 1.62 \begin {gather*} x \log \left (\frac {\log \left (-\frac {2 \, x^{2} e^{x} - x e^{\left (2 \, x\right )}}{x^{2} - 2 \, x e^{x} + e^{\left (2 \, x\right )}}\right )}{\log \left (\log \relax (x)\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.07, size = 0, normalized size = 0.00 \[\int \frac {\left ({\mathrm e}^{2 x}-3 \,{\mathrm e}^{x} x +2 x^{2}\right ) \ln \relax (x ) \ln \left (\frac {x \,{\mathrm e}^{2 x}-2 \,{\mathrm e}^{x} x^{2}}{{\mathrm e}^{2 x}-2 \,{\mathrm e}^{x} x +x^{2}}\right ) \ln \left (\ln \relax (x )\right ) \ln \left (\frac {\ln \left (\frac {x \,{\mathrm e}^{2 x}-2 \,{\mathrm e}^{x} x^{2}}{{\mathrm e}^{2 x}-2 \,{\mathrm e}^{x} x +x^{2}}\right )}{\ln \left (\ln \relax (x )\right )}\right )+\left ({\mathrm e}^{2 x}-3 \,{\mathrm e}^{x} x +2 x^{3}\right ) \ln \relax (x ) \ln \left (\ln \relax (x )\right )+\left (-{\mathrm e}^{2 x}+3 \,{\mathrm e}^{x} x -2 x^{2}\right ) \ln \left (\frac {x \,{\mathrm e}^{2 x}-2 \,{\mathrm e}^{x} x^{2}}{{\mathrm e}^{2 x}-2 \,{\mathrm e}^{x} x +x^{2}}\right )}{\left ({\mathrm e}^{2 x}-3 \,{\mathrm e}^{x} x +2 x^{2}\right ) \ln \relax (x ) \ln \left (\frac {x \,{\mathrm e}^{2 x}-2 \,{\mathrm e}^{x} x^{2}}{{\mathrm e}^{2 x}-2 \,{\mathrm e}^{x} x +x^{2}}\right ) \ln \left (\ln \relax (x )\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.64, size = 31, normalized size = 1.19 \begin {gather*} x \log \left (x + \log \relax (x) - 2 \, \log \left (-x + e^{x}\right ) + \log \left (-2 \, x + e^{x}\right )\right ) - x \log \left (\log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.54, size = 40, normalized size = 1.54 \begin {gather*} x\,\ln \left (\frac {\ln \left (\frac {x\,{\mathrm {e}}^{2\,x}-2\,x^2\,{\mathrm {e}}^x}{{\mathrm {e}}^{2\,x}-2\,x\,{\mathrm {e}}^x+x^2}\right )}{\ln \left (\ln \relax (x)\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________