Optimal. Leaf size=20 \[ \log \left (e^x+\frac {16 x^8 \log ^8(4)}{(1+\log (2))^4}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 21, normalized size of antiderivative = 1.05, number of steps used = 1, number of rules used = 1, integrand size = 75, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.013, Rules used = {6684} \begin {gather*} \log \left (16 x^8 \log ^8(4)+e^x (1+\log (2))^4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log \left (e^x (1+\log (2))^4+16 x^8 \log ^8(4)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 21, normalized size = 1.05 \begin {gather*} \log \left (e^x (1+\log (2))^4+16 x^8 \log ^8(4)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 36, normalized size = 1.80 \begin {gather*} \log \left (4096 \, x^{8} \log \relax (2)^{8} + {\left (\log \relax (2)^{4} + 4 \, \log \relax (2)^{3} + 6 \, \log \relax (2)^{2} + 4 \, \log \relax (2) + 1\right )} e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 42, normalized size = 2.10 \begin {gather*} \log \left (4096 \, x^{8} \log \relax (2)^{8} + e^{x} \log \relax (2)^{4} + 4 \, e^{x} \log \relax (2)^{3} + 6 \, e^{x} \log \relax (2)^{2} + 4 \, e^{x} \log \relax (2) + e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 37, normalized size = 1.85
method | result | size |
derivativedivides | \(\ln \left (\left (\ln \relax (2)^{4}+4 \ln \relax (2)^{3}+6 \ln \relax (2)^{2}+4 \ln \relax (2)+1\right ) {\mathrm e}^{x}+4096 x^{8} \ln \relax (2)^{8}\right )\) | \(37\) |
default | \(\ln \left (\left (\ln \relax (2)^{4}+4 \ln \relax (2)^{3}+6 \ln \relax (2)^{2}+4 \ln \relax (2)+1\right ) {\mathrm e}^{x}+4096 x^{8} \ln \relax (2)^{8}\right )\) | \(37\) |
risch | \(\ln \left ({\mathrm e}^{x}+\frac {4096 x^{8} \ln \relax (2)^{8}}{\ln \relax (2)^{4}+4 \ln \relax (2)^{3}+6 \ln \relax (2)^{2}+4 \ln \relax (2)+1}\right )\) | \(38\) |
norman | \(\ln \left (4096 x^{8} \ln \relax (2)^{8}+{\mathrm e}^{x} \ln \relax (2)^{4}+4 \ln \relax (2)^{3} {\mathrm e}^{x}+6 \ln \relax (2)^{2} {\mathrm e}^{x}+4 \,{\mathrm e}^{x} \ln \relax (2)+{\mathrm e}^{x}\right )\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 36, normalized size = 1.80 \begin {gather*} \log \left (4096 \, x^{8} \log \relax (2)^{8} + {\left (\log \relax (2)^{4} + 4 \, \log \relax (2)^{3} + 6 \, \log \relax (2)^{2} + 4 \, \log \relax (2) + 1\right )} e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.89, size = 42, normalized size = 2.10 \begin {gather*} \ln \left ({\mathrm {e}}^x+4096\,x^8\,{\ln \relax (2)}^8+6\,{\mathrm {e}}^x\,{\ln \relax (2)}^2+4\,{\mathrm {e}}^x\,{\ln \relax (2)}^3+{\mathrm {e}}^x\,{\ln \relax (2)}^4+4\,{\mathrm {e}}^x\,\ln \relax (2)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 39, normalized size = 1.95 \begin {gather*} \log {\left (\frac {4096 x^{8} \log {\relax (2 )}^{8}}{\log {\relax (2 )}^{4} + 1 + 4 \log {\relax (2 )}^{3} + 4 \log {\relax (2 )} + 6 \log {\relax (2 )}^{2}} + e^{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________