Optimal. Leaf size=24 \[ \frac {1}{2} e^{\frac {1+e^3}{4+e^x-x}} \log (4) \]
________________________________________________________________________________________
Rubi [A] time = 1.06, antiderivative size = 24, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 69, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {6688, 12, 6706} \begin {gather*} \frac {1}{2} e^{\frac {1+e^3}{-x+e^x+4}} \log (4) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {1+e^3}{4+e^x-x}} \left (1+e^3\right ) \left (1-e^x\right ) \log (4)}{2 \left (4+e^x-x\right )^2} \, dx\\ &=\frac {1}{2} \left (\left (1+e^3\right ) \log (4)\right ) \int \frac {e^{\frac {1+e^3}{4+e^x-x}} \left (1-e^x\right )}{\left (4+e^x-x\right )^2} \, dx\\ &=\frac {1}{2} e^{\frac {1+e^3}{4+e^x-x}} \log (4)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 24, normalized size = 1.00 \begin {gather*} \frac {1}{2} e^{\frac {1+e^3}{4+e^x-x}} \log (4) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 19, normalized size = 0.79 \begin {gather*} e^{\left (-\frac {e^{3} + 1}{x - e^{x} - 4}\right )} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left ({\left (e^{3} + 1\right )} e^{x} \log \relax (2) - {\left (e^{3} + 1\right )} \log \relax (2)\right )} e^{\left (-\frac {e^{3} + 1}{x - e^{x} - 4}\right )}}{x^{2} - 2 \, {\left (x - 4\right )} e^{x} - 8 \, x + e^{\left (2 \, x\right )} + 16}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 19, normalized size = 0.79
method | result | size |
risch | \(\ln \relax (2) {\mathrm e}^{\frac {{\mathrm e}^{3}+1}{{\mathrm e}^{x}-x +4}}\) | \(19\) |
norman | \(\frac {x \ln \relax (2) {\mathrm e}^{\frac {{\mathrm e}^{3}+1}{{\mathrm e}^{x}-x +4}}-4 \ln \relax (2) {\mathrm e}^{\frac {{\mathrm e}^{3}+1}{{\mathrm e}^{x}-x +4}}-{\mathrm e}^{x} \ln \relax (2) {\mathrm e}^{\frac {{\mathrm e}^{3}+1}{{\mathrm e}^{x}-x +4}}}{x -{\mathrm e}^{x}-4}\) | \(71\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 29, normalized size = 1.21 \begin {gather*} e^{\left (-\frac {e^{3}}{x - e^{x} - 4} - \frac {1}{x - e^{x} - 4}\right )} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.42, size = 18, normalized size = 0.75 \begin {gather*} {\mathrm {e}}^{\frac {{\mathrm {e}}^3+1}{{\mathrm {e}}^x-x+4}}\,\ln \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 15, normalized size = 0.62 \begin {gather*} e^{\frac {1 + e^{3}}{- x + e^{x} + 4}} \log {\relax (2 )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________