Optimal. Leaf size=33 \[ 5-x+\frac {3+x}{x-e^{-1+x} \log (4)}-\log (\log (3+x-\log (x))) \]
________________________________________________________________________________________
Rubi [F] time = 1.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x^2+x^3+e^{-1+x} \left (2 x-2 x^2\right ) \log (4)+e^{-2+2 x} (-1+x) \log ^2(4)+\left (9 x+3 x^2+3 x^3+x^4+e^{-1+x} \left (-6 x-11 x^2-3 x^3\right ) \log (4)+e^{-2+2 x} \left (3 x+x^2\right ) \log ^2(4)+\left (-3 x-x^3+e^{-1+x} \left (2 x+3 x^2\right ) \log (4)-e^{-2+2 x} x \log ^2(4)\right ) \log (x)\right ) \log (3+x-\log (x))}{\left (-3 x^3-x^4+e^{-1+x} \left (6 x^2+2 x^3\right ) \log (4)+e^{-2+2 x} \left (-3 x-x^2\right ) \log ^2(4)+\left (x^3-2 e^{-1+x} x^2 \log (4)+e^{-2+2 x} x \log ^2(4)\right ) \log (x)\right ) \log (3+x-\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-e^2 \left (3+x^2\right )+e^{1+x} (2+3 x) \log (4)-e^{2 x} \log ^2(4)}{\left (e x-e^x \log (4)\right )^2}+\frac {1-x}{x (3+x-\log (x)) \log (3+x-\log (x))}\right ) \, dx\\ &=\int \frac {-e^2 \left (3+x^2\right )+e^{1+x} (2+3 x) \log (4)-e^{2 x} \log ^2(4)}{\left (e x-e^x \log (4)\right )^2} \, dx+\int \frac {1-x}{x (3+x-\log (x)) \log (3+x-\log (x))} \, dx\\ &=-\log (\log (3+x-\log (x)))+\int \left (-1+\frac {e^2 \left (-3+2 x+x^2\right )}{\left (e x-e^x \log (4)\right )^2}-\frac {e (2+x)}{e x-e^x \log (4)}\right ) \, dx\\ &=-x-\log (\log (3+x-\log (x)))-e \int \frac {2+x}{e x-e^x \log (4)} \, dx+e^2 \int \frac {-3+2 x+x^2}{\left (e x-e^x \log (4)\right )^2} \, dx\\ &=-x-\log (\log (3+x-\log (x)))-e \int \left (\frac {2}{e x-e^x \log (4)}+\frac {x}{e x-e^x \log (4)}\right ) \, dx+e^2 \int \left (-\frac {3}{\left (e x-e^x \log (4)\right )^2}+\frac {2 x}{\left (e x-e^x \log (4)\right )^2}+\frac {x^2}{\left (e x-e^x \log (4)\right )^2}\right ) \, dx\\ &=-x-\log (\log (3+x-\log (x)))-e \int \frac {x}{e x-e^x \log (4)} \, dx-(2 e) \int \frac {1}{e x-e^x \log (4)} \, dx+e^2 \int \frac {x^2}{\left (e x-e^x \log (4)\right )^2} \, dx+\left (2 e^2\right ) \int \frac {x}{\left (e x-e^x \log (4)\right )^2} \, dx-\left (3 e^2\right ) \int \frac {1}{\left (e x-e^x \log (4)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.45, size = 37, normalized size = 1.12 \begin {gather*} -x+\frac {-3 e-e x}{-e x+e^x \log (4)}-\log (\log (3+x-\log (x))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 55, normalized size = 1.67 \begin {gather*} -\frac {2 \, x e^{\left (x - 1\right )} \log \relax (2) - x^{2} + {\left (2 \, e^{\left (x - 1\right )} \log \relax (2) - x\right )} \log \left (\log \left (x - \log \relax (x) + 3\right )\right ) + x + 3}{2 \, e^{\left (x - 1\right )} \log \relax (2) - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.45, size = 66, normalized size = 2.00 \begin {gather*} -\frac {x^{2} e - 2 \, x e^{x} \log \relax (2) + x e \log \left (\log \left (x - \log \relax (x) + 3\right )\right ) - 2 \, e^{x} \log \relax (2) \log \left (\log \left (x - \log \relax (x) + 3\right )\right ) - x e - 3 \, e}{x e - 2 \, e^{x} \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 46, normalized size = 1.39
method | result | size |
risch | \(-\frac {2 x \ln \relax (2) {\mathrm e}^{x -1}-x^{2}+x +3}{2 \ln \relax (2) {\mathrm e}^{x -1}-x}-\ln \left (\ln \left (-\ln \relax (x )+3+x \right )\right )\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 50, normalized size = 1.52 \begin {gather*} -\frac {x^{2} e - 2 \, x e^{x} \log \relax (2) - x e - 3 \, e}{x e - 2 \, e^{x} \log \relax (2)} - \log \left (\log \left (x - \log \relax (x) + 3\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.66, size = 69, normalized size = 2.09 \begin {gather*} -x-\ln \left (\ln \left (x-\ln \relax (x)+3\right )\right )-\frac {6\,\ln \relax (2)-x\,\ln \left (16\right )+4\,x^2\,\ln \relax (2)-x^2\,\ln \left (64\right )}{4\,\ln \relax (2)\,\left (\ln \relax (2)-x\,\ln \relax (2)\right )\,\left ({\mathrm {e}}^{x-1}-\frac {x}{2\,\ln \relax (2)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.74, size = 27, normalized size = 0.82 \begin {gather*} - x + \frac {- x - 3}{- x + 2 e^{x - 1} \log {\relax (2 )}} - \log {\left (\log {\left (x - \log {\relax (x )} + 3 \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________