Optimal. Leaf size=23 \[ 4-e^{5/x}+16 e^{10+2 x^3}+x \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 22, normalized size of antiderivative = 0.96, number of steps used = 6, number of rules used = 2, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {14, 2209} \begin {gather*} 16 e^{2 x^3+10}+x-e^{5/x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2209
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (96 e^{10+2 x^3} x^2+\frac {5 e^{5/x}+x^2}{x^2}\right ) \, dx\\ &=96 \int e^{10+2 x^3} x^2 \, dx+\int \frac {5 e^{5/x}+x^2}{x^2} \, dx\\ &=16 e^{10+2 x^3}+\int \left (1+\frac {5 e^{5/x}}{x^2}\right ) \, dx\\ &=16 e^{10+2 x^3}+x+5 \int \frac {e^{5/x}}{x^2} \, dx\\ &=-e^{5/x}+16 e^{10+2 x^3}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 22, normalized size = 0.96 \begin {gather*} -e^{5/x}+16 e^{10+2 x^3}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 22, normalized size = 0.96 \begin {gather*} x + e^{\left (2 \, x^{3} + 4 \, \log \relax (2) + 10\right )} - e^{\frac {5}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.55, size = 20, normalized size = 0.87 \begin {gather*} x + 16 \, e^{\left (2 \, x^{3} + 10\right )} - e^{\frac {5}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 21, normalized size = 0.91
method | result | size |
risch | \(16 \,{\mathrm e}^{2 x^{3}+10}+x -{\mathrm e}^{\frac {5}{x}}\) | \(21\) |
default | \(x -{\mathrm e}^{\frac {5}{x}}+16 \,{\mathrm e}^{2 x^{3}} {\mathrm e}^{10}\) | \(23\) |
norman | \(\frac {x^{2}+16 x \,{\mathrm e}^{2 x^{3}+10}-x \,{\mathrm e}^{\frac {5}{x}}}{x}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 20, normalized size = 0.87 \begin {gather*} x + 16 \, e^{\left (2 \, x^{3} + 10\right )} - e^{\frac {5}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.64, size = 20, normalized size = 0.87 \begin {gather*} x-{\mathrm {e}}^{5/x}+16\,{\mathrm {e}}^{10}\,{\mathrm {e}}^{2\,x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 15, normalized size = 0.65 \begin {gather*} x - e^{\frac {5}{x}} + 16 e^{2 x^{3} + 10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________