Optimal. Leaf size=34 \[ -\frac {x \left (-x+x^2\right )}{2 (4-x) \left (4+x+\frac {5}{x-\log (x)}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.92, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-20 x+85 x^2-63 x^3-33 x^4+x^6+\left (-40 x+x^2+86 x^3-2 x^5\right ) \log (x)+\left (32 x-48 x^2+x^4\right ) \log ^2(x)}{800+880 x+242 x^2-80 x^3-44 x^4+2 x^6+\left (-1280-704 x+80 x^2+108 x^3-4 x^5\right ) \log (x)+\left (512-64 x^2+2 x^4\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (-20+85 x-63 x^2-33 x^3+x^5+\left (-40+x+86 x^2-2 x^4\right ) \log (x)+\left (32-48 x+x^3\right ) \log ^2(x)\right )}{2 (4-x)^2 \left (5+4 x+x^2-(4+x) \log (x)\right )^2} \, dx\\ &=\frac {1}{2} \int \frac {x \left (-20+85 x-63 x^2-33 x^3+x^5+\left (-40+x+86 x^2-2 x^4\right ) \log (x)+\left (32-48 x+x^3\right ) \log ^2(x)\right )}{(4-x)^2 \left (5+4 x+x^2-(4+x) \log (x)\right )^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {x \left (32-48 x+x^3\right )}{\left (-16+x^2\right )^2}+\frac {5 x \left (16-19 x-4 x^2+6 x^3+x^4\right )}{(-4+x) (4+x)^2 \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )^2}-\frac {5 x \left (32-52 x+5 x^2\right )}{\left (-16+x^2\right )^2 \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )}\right ) \, dx\\ &=\frac {1}{2} \int \frac {x \left (32-48 x+x^3\right )}{\left (-16+x^2\right )^2} \, dx+\frac {5}{2} \int \frac {x \left (16-19 x-4 x^2+6 x^3+x^4\right )}{(-4+x) (4+x)^2 \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )^2} \, dx-\frac {5}{2} \int \frac {x \left (32-52 x+5 x^2\right )}{\left (-16+x^2\right )^2 \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )} \, dx\\ &=-\frac {(16-x) x}{2 \left (16-x^2\right )}+\frac {1}{64} \int \frac {-512+32 x^2}{-16+x^2} \, dx+\frac {5}{2} \int \left (\frac {4}{\left (5+4 x+x^2-4 \log (x)-x \log (x)\right )^2}+\frac {129}{4 (-4+x) \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )^2}+\frac {2 x}{\left (5+4 x+x^2-4 \log (x)-x \log (x)\right )^2}+\frac {x^2}{\left (5+4 x+x^2-4 \log (x)-x \log (x)\right )^2}-\frac {50}{(4+x)^2 \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )^2}+\frac {115}{4 (4+x) \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )^2}\right ) \, dx-\frac {5}{2} \int \left (-\frac {6}{(-4+x)^2 \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )}-\frac {3}{4 (-4+x) \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )}-\frac {20}{(4+x)^2 \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )}+\frac {23}{4 (4+x) \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )}\right ) \, dx\\ &=-\frac {(16-x) x}{2 \left (16-x^2\right )}+\frac {\int 1 \, dx}{2}+\frac {15}{8} \int \frac {1}{(-4+x) \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )} \, dx+\frac {5}{2} \int \frac {x^2}{\left (5+4 x+x^2-4 \log (x)-x \log (x)\right )^2} \, dx+5 \int \frac {x}{\left (5+4 x+x^2-4 \log (x)-x \log (x)\right )^2} \, dx+10 \int \frac {1}{\left (5+4 x+x^2-4 \log (x)-x \log (x)\right )^2} \, dx-\frac {115}{8} \int \frac {1}{(4+x) \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )} \, dx+15 \int \frac {1}{(-4+x)^2 \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )} \, dx+50 \int \frac {1}{(4+x)^2 \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )} \, dx+\frac {575}{8} \int \frac {1}{(4+x) \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )^2} \, dx+\frac {645}{8} \int \frac {1}{(-4+x) \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )^2} \, dx-125 \int \frac {1}{(4+x)^2 \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )^2} \, dx\\ &=\frac {x}{2}-\frac {(16-x) x}{2 \left (16-x^2\right )}+\frac {15}{8} \int \frac {1}{(-4+x) \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )} \, dx+\frac {5}{2} \int \frac {x^2}{\left (5+4 x+x^2-4 \log (x)-x \log (x)\right )^2} \, dx+5 \int \frac {x}{\left (5+4 x+x^2-4 \log (x)-x \log (x)\right )^2} \, dx+10 \int \frac {1}{\left (5+4 x+x^2-4 \log (x)-x \log (x)\right )^2} \, dx-\frac {115}{8} \int \frac {1}{(4+x) \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )} \, dx+15 \int \frac {1}{(-4+x)^2 \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )} \, dx+50 \int \frac {1}{(4+x)^2 \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )} \, dx+\frac {575}{8} \int \frac {1}{(4+x) \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )^2} \, dx+\frac {645}{8} \int \frac {1}{(-4+x) \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )^2} \, dx-125 \int \frac {1}{(4+x)^2 \left (5+4 x+x^2-4 \log (x)-x \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.68, size = 43, normalized size = 1.26 \begin {gather*} \frac {-20-11 x+x^4-\left (-16+x^3\right ) \log (x)}{2 (-4+x) \left (5+4 x+x^2-(4+x) \log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 38, normalized size = 1.12 \begin {gather*} \frac {x^{4} - {\left (x^{3} - 16\right )} \log \relax (x) - 11 \, x - 20}{2 \, {\left (x^{3} - {\left (x^{2} - 16\right )} \log \relax (x) - 11 \, x - 20\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 70, normalized size = 2.06 \begin {gather*} \frac {1}{2} \, x - \frac {5 \, {\left (x^{3} - x^{2}\right )}}{2 \, {\left (x^{4} - x^{3} \log \relax (x) + 4 \, x^{3} - 4 \, x^{2} \log \relax (x) - 11 \, x^{2} + 16 \, x \log \relax (x) - 64 \, x + 64 \, \log \relax (x) - 80\right )}} + \frac {8 \, {\left (x - 1\right )}}{x^{2} - 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 48, normalized size = 1.41
method | result | size |
norman | \(\frac {-\frac {x^{3}}{2}+\frac {x^{2} \ln \relax (x )}{2}+\frac {x^{4}}{2}-\frac {x^{3} \ln \relax (x )}{2}}{x^{3}-x^{2} \ln \relax (x )-11 x +16 \ln \relax (x )-20}\) | \(48\) |
risch | \(\frac {x^{3}-16}{2 x^{2}-32}-\frac {5 x^{2} \left (x -1\right )}{2 \left (4+x \right ) \left (x -4\right ) \left (x^{2}-x \ln \relax (x )+4 x -4 \ln \relax (x )+5\right )}\) | \(53\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 38, normalized size = 1.12 \begin {gather*} \frac {x^{4} - {\left (x^{3} - 16\right )} \log \relax (x) - 11 \, x - 20}{2 \, {\left (x^{3} - {\left (x^{2} - 16\right )} \log \relax (x) - 11 \, x - 20\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.31, size = 46, normalized size = 1.35 \begin {gather*} -\frac {11\,x-16\,\ln \relax (x)+x^3\,\ln \relax (x)-x^4+20}{2\,\left (x-4\right )\,\left (4\,x-4\,\ln \relax (x)-x\,\ln \relax (x)+x^2+5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.34, size = 61, normalized size = 1.79 \begin {gather*} \frac {x}{2} + \frac {8 x - 8}{x^{2} - 16} + \frac {5 x^{3} - 5 x^{2}}{- 2 x^{4} - 8 x^{3} + 22 x^{2} + 128 x + \left (2 x^{3} + 8 x^{2} - 32 x - 128\right ) \log {\relax (x )} + 160} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________