Optimal. Leaf size=34 \[ \left (2+x-e^{2 x-\frac {x}{4 \left (5+e^{(3-x) x^2}\right )}} x\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 157.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {200+100 x+e^{6 x^2-2 x^3} (8+4 x)+e^{3 x^2-x^3} (80+40 x)+\exp \left (\frac {2 \left (39 x+8 e^{3 x^2-x^3} x\right )}{20+4 e^{3 x^2-x^3}}\right ) \left (100 x+195 x^2+e^{6 x^2-2 x^3} \left (4 x+8 x^2\right )+e^{3 x^2-x^3} \left (40 x+79 x^2+6 x^4-3 x^5\right )\right )+\exp \left (\frac {39 x+8 e^{3 x^2-x^3} x}{20+4 e^{3 x^2-x^3}}\right ) \left (-200-590 x-195 x^2+e^{6 x^2-2 x^3} \left (-8-24 x-8 x^2\right )+e^{3 x^2-x^3} \left (-80-238 x-79 x^2-12 x^3+3 x^5\right )\right )}{50+2 e^{6 x^2-2 x^3}+20 e^{3 x^2-x^3}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 x^3} \left (200+100 x+e^{6 x^2-2 x^3} (8+4 x)+e^{3 x^2-x^3} (80+40 x)+\exp \left (\frac {2 \left (39 x+8 e^{3 x^2-x^3} x\right )}{20+4 e^{3 x^2-x^3}}\right ) \left (100 x+195 x^2+e^{6 x^2-2 x^3} \left (4 x+8 x^2\right )+e^{3 x^2-x^3} \left (40 x+79 x^2+6 x^4-3 x^5\right )\right )+\exp \left (\frac {39 x+8 e^{3 x^2-x^3} x}{20+4 e^{3 x^2-x^3}}\right ) \left (-200-590 x-195 x^2+e^{6 x^2-2 x^3} \left (-8-24 x-8 x^2\right )+e^{3 x^2-x^3} \left (-80-238 x-79 x^2-12 x^3+3 x^5\right )\right )\right )}{2 \left (e^{3 x^2}+5 e^{x^3}\right )^2} \, dx\\ &=\frac {1}{2} \int \frac {e^{2 x^3} \left (200+100 x+e^{6 x^2-2 x^3} (8+4 x)+e^{3 x^2-x^3} (80+40 x)+\exp \left (\frac {2 \left (39 x+8 e^{3 x^2-x^3} x\right )}{20+4 e^{3 x^2-x^3}}\right ) \left (100 x+195 x^2+e^{6 x^2-2 x^3} \left (4 x+8 x^2\right )+e^{3 x^2-x^3} \left (40 x+79 x^2+6 x^4-3 x^5\right )\right )+\exp \left (\frac {39 x+8 e^{3 x^2-x^3} x}{20+4 e^{3 x^2-x^3}}\right ) \left (-200-590 x-195 x^2+e^{6 x^2-2 x^3} \left (-8-24 x-8 x^2\right )+e^{3 x^2-x^3} \left (-80-238 x-79 x^2-12 x^3+3 x^5\right )\right )\right )}{\left (e^{3 x^2}+5 e^{x^3}\right )^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {15 \exp \left (\frac {\left (8 e^{3 x^2}+39 e^{x^3}\right ) x}{4 \left (e^{3 x^2}+5 e^{x^3}\right )}+2 x^3\right ) (-2+x) x^3 \left (-2-x+\exp \left (\frac {\left (8 e^{3 x^2}+39 e^{x^3}\right ) x}{4 \left (e^{3 x^2}+5 e^{x^3}\right )}\right ) x\right )}{\left (e^{3 x^2}+5 e^{x^3}\right )^2}+4 \left (-2-x+\exp \left (\frac {\left (8 e^{3 x^2}+39 e^{x^3}\right ) x}{4 \left (e^{3 x^2}+5 e^{x^3}\right )}\right ) x\right ) \left (-1+\exp \left (\frac {\left (8 e^{3 x^2}+39 e^{x^3}\right ) x}{4 \left (e^{3 x^2}+5 e^{x^3}\right )}\right )+2 \exp \left (\frac {\left (8 e^{3 x^2}+39 e^{x^3}\right ) x}{4 \left (e^{3 x^2}+5 e^{x^3}\right )}\right ) x\right )-\exp \left (2 x^3-\frac {x \left (4 e^{3 x^2} \left (-2+3 x+x^2\right )+e^{x^3} \left (-39+60 x+20 x^2\right )\right )}{4 \left (e^{3 x^2}+5 e^{x^3}\right )}\right ) x \left (-2-x+\exp \left (\frac {\left (8 e^{3 x^2}+39 e^{x^3}\right ) x}{4 \left (e^{3 x^2}+5 e^{x^3}\right )}\right ) x\right ) \left (1-6 x^2+3 x^3\right )+\frac {5 \exp \left (2 x^3-\frac {x \left (4 e^{3 x^2} (-2+3 x)+e^{x^3} (-39+60 x)\right )}{4 \left (e^{3 x^2}+5 e^{x^3}\right )}\right ) x \left (-2-x+\exp \left (\frac {\left (8 e^{3 x^2}+39 e^{x^3}\right ) x}{4 \left (e^{3 x^2}+5 e^{x^3}\right )}\right ) x\right ) \left (1-6 x^2+3 x^3\right )}{e^{3 x^2}+5 e^{x^3}}\right ) \, dx\\ &=-\left (\frac {1}{2} \int \exp \left (2 x^3-\frac {x \left (4 e^{3 x^2} \left (-2+3 x+x^2\right )+e^{x^3} \left (-39+60 x+20 x^2\right )\right )}{4 \left (e^{3 x^2}+5 e^{x^3}\right )}\right ) x \left (-2-x+\exp \left (\frac {\left (8 e^{3 x^2}+39 e^{x^3}\right ) x}{4 \left (e^{3 x^2}+5 e^{x^3}\right )}\right ) x\right ) \left (1-6 x^2+3 x^3\right ) \, dx\right )+2 \int \left (-2-x+\exp \left (\frac {\left (8 e^{3 x^2}+39 e^{x^3}\right ) x}{4 \left (e^{3 x^2}+5 e^{x^3}\right )}\right ) x\right ) \left (-1+\exp \left (\frac {\left (8 e^{3 x^2}+39 e^{x^3}\right ) x}{4 \left (e^{3 x^2}+5 e^{x^3}\right )}\right )+2 \exp \left (\frac {\left (8 e^{3 x^2}+39 e^{x^3}\right ) x}{4 \left (e^{3 x^2}+5 e^{x^3}\right )}\right ) x\right ) \, dx+\frac {5}{2} \int \frac {\exp \left (2 x^3-\frac {x \left (4 e^{3 x^2} (-2+3 x)+e^{x^3} (-39+60 x)\right )}{4 \left (e^{3 x^2}+5 e^{x^3}\right )}\right ) x \left (-2-x+\exp \left (\frac {\left (8 e^{3 x^2}+39 e^{x^3}\right ) x}{4 \left (e^{3 x^2}+5 e^{x^3}\right )}\right ) x\right ) \left (1-6 x^2+3 x^3\right )}{e^{3 x^2}+5 e^{x^3}} \, dx+\frac {15}{2} \int \frac {\exp \left (\frac {\left (8 e^{3 x^2}+39 e^{x^3}\right ) x}{4 \left (e^{3 x^2}+5 e^{x^3}\right )}+2 x^3\right ) (-2+x) x^3 \left (-2-x+\exp \left (\frac {\left (8 e^{3 x^2}+39 e^{x^3}\right ) x}{4 \left (e^{3 x^2}+5 e^{x^3}\right )}\right ) x\right )}{\left (e^{3 x^2}+5 e^{x^3}\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 177.60, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {200+100 x+e^{6 x^2-2 x^3} (8+4 x)+e^{3 x^2-x^3} (80+40 x)+e^{\frac {2 \left (39 x+8 e^{3 x^2-x^3} x\right )}{20+4 e^{3 x^2-x^3}}} \left (100 x+195 x^2+e^{6 x^2-2 x^3} \left (4 x+8 x^2\right )+e^{3 x^2-x^3} \left (40 x+79 x^2+6 x^4-3 x^5\right )\right )+e^{\frac {39 x+8 e^{3 x^2-x^3} x}{20+4 e^{3 x^2-x^3}}} \left (-200-590 x-195 x^2+e^{6 x^2-2 x^3} \left (-8-24 x-8 x^2\right )+e^{3 x^2-x^3} \left (-80-238 x-79 x^2-12 x^3+3 x^5\right )\right )}{50+2 e^{6 x^2-2 x^3}+20 e^{3 x^2-x^3}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.56, size = 96, normalized size = 2.82 \begin {gather*} x^{2} e^{\left (\frac {8 \, x e^{\left (-x^{3} + 3 \, x^{2}\right )} + 39 \, x}{2 \, {\left (e^{\left (-x^{3} + 3 \, x^{2}\right )} + 5\right )}}\right )} + x^{2} - 2 \, {\left (x^{2} + 2 \, x\right )} e^{\left (\frac {8 \, x e^{\left (-x^{3} + 3 \, x^{2}\right )} + 39 \, x}{4 \, {\left (e^{\left (-x^{3} + 3 \, x^{2}\right )} + 5\right )}}\right )} + 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.10, size = 82, normalized size = 2.41
method | result | size |
risch | \(x^{2} {\mathrm e}^{\frac {\left (8 \,{\mathrm e}^{-x^{2} \left (x -3\right )}+39\right ) x}{2 \,{\mathrm e}^{-x^{2} \left (x -3\right )}+10}}+x^{2}+4 x +\left (-2 x^{2}-4 x \right ) {\mathrm e}^{\frac {\left (8 \,{\mathrm e}^{-x^{2} \left (x -3\right )}+39\right ) x}{4 \,{\mathrm e}^{-x^{2} \left (x -3\right )}+20}}\) | \(82\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.46, size = 116, normalized size = 3.41 \begin {gather*} x^{2} e^{\left (\frac {39 \, x e^{\left (x^{3}\right )}}{2 \, {\left (5 \, e^{\left (x^{3}\right )} + e^{\left (3 \, x^{2}\right )}\right )}} + \frac {4 \, x e^{\left (3 \, x^{2}\right )}}{5 \, e^{\left (x^{3}\right )} + e^{\left (3 \, x^{2}\right )}}\right )} + x^{2} - 2 \, {\left (x^{2} + 2 \, x\right )} e^{\left (\frac {39 \, x e^{\left (x^{3}\right )}}{4 \, {\left (5 \, e^{\left (x^{3}\right )} + e^{\left (3 \, x^{2}\right )}\right )}} + \frac {2 \, x e^{\left (3 \, x^{2}\right )}}{5 \, e^{\left (x^{3}\right )} + e^{\left (3 \, x^{2}\right )}}\right )} + 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.48, size = 134, normalized size = 3.94 \begin {gather*} 4\,x-{\mathrm {e}}^{\frac {39\,x}{4\,{\mathrm {e}}^{-x^3}\,{\mathrm {e}}^{3\,x^2}+20}+\frac {8\,x\,{\mathrm {e}}^{-x^3}\,{\mathrm {e}}^{3\,x^2}}{4\,{\mathrm {e}}^{-x^3}\,{\mathrm {e}}^{3\,x^2}+20}}\,\left (2\,x^2+4\,x\right )+x^2\,{\mathrm {e}}^{\frac {78\,x}{4\,{\mathrm {e}}^{-x^3}\,{\mathrm {e}}^{3\,x^2}+20}+\frac {16\,x\,{\mathrm {e}}^{-x^3}\,{\mathrm {e}}^{3\,x^2}}{4\,{\mathrm {e}}^{-x^3}\,{\mathrm {e}}^{3\,x^2}+20}}+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 71.71, size = 83, normalized size = 2.44 \begin {gather*} x^{2} e^{\frac {2 \left (8 x e^{- x^{3} + 3 x^{2}} + 39 x\right )}{4 e^{- x^{3} + 3 x^{2}} + 20}} + x^{2} + 4 x + \left (- 2 x^{2} - 4 x\right ) e^{\frac {8 x e^{- x^{3} + 3 x^{2}} + 39 x}{4 e^{- x^{3} + 3 x^{2}} + 20}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________