3.69.27 \(\int \frac {36+49 x+(-33 x-52 x^2) \log (9 x)+(6 x^2+13 x^3) \log ^2(9 x)}{4 x^3-4 x^4 \log (9 x)+x^5 \log ^2(9 x)} \, dx\)

Optimal. Leaf size=29 \[ \frac {-13+\frac {-3+\frac {3}{x \left (-\frac {2}{x}+\log (9 x)\right )}}{x}}{x} \]

________________________________________________________________________________________

Rubi [F]  time = 0.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {36+49 x+\left (-33 x-52 x^2\right ) \log (9 x)+\left (6 x^2+13 x^3\right ) \log ^2(9 x)}{4 x^3-4 x^4 \log (9 x)+x^5 \log ^2(9 x)} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(36 + 49*x + (-33*x - 52*x^2)*Log[9*x] + (6*x^2 + 13*x^3)*Log[9*x]^2)/(4*x^3 - 4*x^4*Log[9*x] + x^5*Log[9*
x]^2),x]

[Out]

-1/12*(6 + 13*x)^2/x^2 - 6*Defer[Int][1/(x^3*(-2 + x*Log[9*x])^2), x] - 3*Defer[Int][1/(x^2*(-2 + x*Log[9*x])^
2), x] - 9*Defer[Int][1/(x^3*(-2 + x*Log[9*x])), x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {36+49 x-x (33+52 x) \log (9 x)+x^2 (6+13 x) \log ^2(9 x)}{x^3 (2-x \log (9 x))^2} \, dx\\ &=\int \left (\frac {6+13 x}{x^3}-\frac {3 (2+x)}{x^3 (-2+x \log (9 x))^2}-\frac {9}{x^3 (-2+x \log (9 x))}\right ) \, dx\\ &=-\left (3 \int \frac {2+x}{x^3 (-2+x \log (9 x))^2} \, dx\right )-9 \int \frac {1}{x^3 (-2+x \log (9 x))} \, dx+\int \frac {6+13 x}{x^3} \, dx\\ &=-\frac {(6+13 x)^2}{12 x^2}-3 \int \left (\frac {2}{x^3 (-2+x \log (9 x))^2}+\frac {1}{x^2 (-2+x \log (9 x))^2}\right ) \, dx-9 \int \frac {1}{x^3 (-2+x \log (9 x))} \, dx\\ &=-\frac {(6+13 x)^2}{12 x^2}-3 \int \frac {1}{x^2 (-2+x \log (9 x))^2} \, dx-6 \int \frac {1}{x^3 (-2+x \log (9 x))^2} \, dx-9 \int \frac {1}{x^3 (-2+x \log (9 x))} \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.17, size = 21, normalized size = 0.72 \begin {gather*} \frac {-3-13 x+\frac {3}{-2+x \log (9 x)}}{x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(36 + 49*x + (-33*x - 52*x^2)*Log[9*x] + (6*x^2 + 13*x^3)*Log[9*x]^2)/(4*x^3 - 4*x^4*Log[9*x] + x^5*
Log[9*x]^2),x]

[Out]

(-3 - 13*x + 3/(-2 + x*Log[9*x]))/x^2

________________________________________________________________________________________

fricas [A]  time = 0.58, size = 37, normalized size = 1.28 \begin {gather*} -\frac {{\left (13 \, x^{2} + 3 \, x\right )} \log \left (9 \, x\right ) - 26 \, x - 9}{x^{3} \log \left (9 \, x\right ) - 2 \, x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((13*x^3+6*x^2)*log(9*x)^2+(-52*x^2-33*x)*log(9*x)+49*x+36)/(x^5*log(9*x)^2-4*x^4*log(9*x)+4*x^3),x,
 algorithm="fricas")

[Out]

-((13*x^2 + 3*x)*log(9*x) - 26*x - 9)/(x^3*log(9*x) - 2*x^2)

________________________________________________________________________________________

giac [A]  time = 0.18, size = 29, normalized size = 1.00 \begin {gather*} \frac {3}{x^{3} \log \left (9 \, x\right ) - 2 \, x^{2}} - \frac {13 \, x + 3}{x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((13*x^3+6*x^2)*log(9*x)^2+(-52*x^2-33*x)*log(9*x)+49*x+36)/(x^5*log(9*x)^2-4*x^4*log(9*x)+4*x^3),x,
 algorithm="giac")

[Out]

3/(x^3*log(9*x) - 2*x^2) - (13*x + 3)/x^2

________________________________________________________________________________________

maple [A]  time = 0.05, size = 27, normalized size = 0.93




method result size



risch \(-\frac {13 x +3}{x^{2}}+\frac {3}{x^{2} \left (x \ln \left (9 x \right )-2\right )}\) \(27\)
norman \(\frac {9-13 x^{2} \ln \left (9 x \right )+26 x -3 x \ln \left (9 x \right )}{x^{2} \left (x \ln \left (9 x \right )-2\right )}\) \(36\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((13*x^3+6*x^2)*ln(9*x)^2+(-52*x^2-33*x)*ln(9*x)+49*x+36)/(x^5*ln(9*x)^2-4*x^4*ln(9*x)+4*x^3),x,method=_RE
TURNVERBOSE)

[Out]

-(13*x+3)/x^2+3/x^2/(x*ln(9*x)-2)

________________________________________________________________________________________

maxima [A]  time = 0.50, size = 53, normalized size = 1.83 \begin {gather*} -\frac {26 \, x^{2} \log \relax (3) + 2 \, x {\left (3 \, \log \relax (3) - 13\right )} + {\left (13 \, x^{2} + 3 \, x\right )} \log \relax (x) - 9}{2 \, x^{3} \log \relax (3) + x^{3} \log \relax (x) - 2 \, x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((13*x^3+6*x^2)*log(9*x)^2+(-52*x^2-33*x)*log(9*x)+49*x+36)/(x^5*log(9*x)^2-4*x^4*log(9*x)+4*x^3),x,
 algorithm="maxima")

[Out]

-(26*x^2*log(3) + 2*x*(3*log(3) - 13) + (13*x^2 + 3*x)*log(x) - 9)/(2*x^3*log(3) + x^3*log(x) - 2*x^2)

________________________________________________________________________________________

mupad [B]  time = 4.24, size = 35, normalized size = 1.21 \begin {gather*} \frac {26\,x-3\,x\,\ln \left (9\,x\right )-13\,x^2\,\ln \left (9\,x\right )+9}{x^2\,\left (x\,\ln \left (9\,x\right )-2\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((49*x - log(9*x)*(33*x + 52*x^2) + log(9*x)^2*(6*x^2 + 13*x^3) + 36)/(4*x^3 - 4*x^4*log(9*x) + x^5*log(9*x
)^2),x)

[Out]

(26*x - 3*x*log(9*x) - 13*x^2*log(9*x) + 9)/(x^2*(x*log(9*x) - 2))

________________________________________________________________________________________

sympy [A]  time = 0.17, size = 24, normalized size = 0.83 \begin {gather*} \frac {3}{x^{3} \log {\left (9 x \right )} - 2 x^{2}} + \frac {- 13 x - 3}{x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((13*x**3+6*x**2)*ln(9*x)**2+(-52*x**2-33*x)*ln(9*x)+49*x+36)/(x**5*ln(9*x)**2-4*x**4*ln(9*x)+4*x**3
),x)

[Out]

3/(x**3*log(9*x) - 2*x**2) + (-13*x - 3)/x**2

________________________________________________________________________________________