3.7.71 \(\int \frac {e^{\frac {-i \pi -x-\log (2)}{4 x^3+8 x^4+4 x^5}} (2 x+4 x^2+(3+5 x) (i \pi +\log (2)))}{4 x^4+12 x^5+12 x^6+4 x^7} \, dx\)

Optimal. Leaf size=26 \[ e^{\frac {i \pi -x-\log (2)}{(-2-2 x)^2 x^3}} \]

________________________________________________________________________________________

Rubi [A]  time = 1.68, antiderivative size = 36, normalized size of antiderivative = 1.38, number of steps used = 3, number of rules used = 3, integrand size = 81, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.037, Rules used = {6741, 12, 6706} \begin {gather*} 2^{-\frac {1}{4 x^3 (x+1)^2}} e^{-\frac {x+i \pi }{4 x^3 (x+1)^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(E^(((-I)*Pi - x - Log[2])/(4*x^3 + 8*x^4 + 4*x^5))*(2*x + 4*x^2 + (3 + 5*x)*(I*Pi + Log[2])))/(4*x^4 + 12
*x^5 + 12*x^6 + 4*x^7),x]

[Out]

1/(2^(1/(4*x^3*(1 + x)^2))*E^((I*Pi + x)/(4*x^3*(1 + x)^2)))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {-i \pi -x-\log (2)}{4 x^3 (1+x)^2}} \left (3 i \pi +4 x^2+\log (8)+x (2+5 i \pi +\log (32))\right )}{4 x^4 (1+x)^3} \, dx\\ &=\frac {1}{4} \int \frac {e^{\frac {-i \pi -x-\log (2)}{4 x^3 (1+x)^2}} \left (3 i \pi +4 x^2+\log (8)+x (2+5 i \pi +\log (32))\right )}{x^4 (1+x)^3} \, dx\\ &=2^{-\frac {1}{4 x^3 (1+x)^2}} e^{-\frac {i \pi +x}{4 x^3 (1+x)^2}}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [F]  time = 6.35, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {-i \pi -x-\log (2)}{4 x^3+8 x^4+4 x^5}} \left (2 x+4 x^2+(3+5 x) (i \pi +\log (2))\right )}{4 x^4+12 x^5+12 x^6+4 x^7} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Integrate[(E^(((-I)*Pi - x - Log[2])/(4*x^3 + 8*x^4 + 4*x^5))*(2*x + 4*x^2 + (3 + 5*x)*(I*Pi + Log[2])))/(4*x^
4 + 12*x^5 + 12*x^6 + 4*x^7),x]

[Out]

Integrate[(E^(((-I)*Pi - x - Log[2])/(4*x^3 + 8*x^4 + 4*x^5))*(2*x + 4*x^2 + (3 + 5*x)*(I*Pi + Log[2])))/(4*x^
4 + 12*x^5 + 12*x^6 + 4*x^7), x]

________________________________________________________________________________________

fricas [A]  time = 0.84, size = 54, normalized size = 2.08 \begin {gather*} e^{\left (-\frac {i \, \pi }{4 \, {\left (x^{5} + 2 \, x^{4} + x^{3}\right )}} - \frac {x}{4 \, {\left (x^{5} + 2 \, x^{4} + x^{3}\right )}} - \frac {\log \relax (2)}{4 \, {\left (x^{5} + 2 \, x^{4} + x^{3}\right )}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*x+3)*(log(2)+I*pi)+4*x^2+2*x)*exp((-log(2)-I*pi-x)/(4*x^5+8*x^4+4*x^3))/(4*x^7+12*x^6+12*x^5+4*x
^4),x, algorithm="fricas")

[Out]

e^(-1/4*I*pi/(x^5 + 2*x^4 + x^3) - 1/4*x/(x^5 + 2*x^4 + x^3) - 1/4*log(2)/(x^5 + 2*x^4 + x^3))

________________________________________________________________________________________

giac [A]  time = 0.39, size = 54, normalized size = 2.08 \begin {gather*} e^{\left (-\frac {i \, \pi }{4 \, {\left (x^{5} + 2 \, x^{4} + x^{3}\right )}} - \frac {x}{4 \, {\left (x^{5} + 2 \, x^{4} + x^{3}\right )}} - \frac {\log \relax (2)}{4 \, {\left (x^{5} + 2 \, x^{4} + x^{3}\right )}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*x+3)*(log(2)+I*pi)+4*x^2+2*x)*exp((-log(2)-I*pi-x)/(4*x^5+8*x^4+4*x^3))/(4*x^7+12*x^6+12*x^5+4*x
^4),x, algorithm="giac")

[Out]

e^(-1/4*I*pi/(x^5 + 2*x^4 + x^3) - 1/4*x/(x^5 + 2*x^4 + x^3) - 1/4*log(2)/(x^5 + 2*x^4 + x^3))

________________________________________________________________________________________

maple [A]  time = 0.28, size = 20, normalized size = 0.77




method result size



risch \({\mathrm e}^{-\frac {i \pi +\ln \relax (2)+x}{4 x^{3} \left (x +1\right )^{2}}}\) \(20\)
norman \(\frac {x^{3} {\mathrm e}^{\frac {-\ln \relax (2)-i \pi -x}{4 x^{5}+8 x^{4}+4 x^{3}}}+x^{5} {\mathrm e}^{\frac {-\ln \relax (2)-i \pi -x}{4 x^{5}+8 x^{4}+4 x^{3}}}+2 x^{4} {\mathrm e}^{\frac {-\ln \relax (2)-i \pi -x}{4 x^{5}+8 x^{4}+4 x^{3}}}}{x^{3} \left (x +1\right )^{2}}\) \(120\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((5*x+3)*(ln(2)+I*Pi)+4*x^2+2*x)*exp((-ln(2)-I*Pi-x)/(4*x^5+8*x^4+4*x^3))/(4*x^7+12*x^6+12*x^5+4*x^4),x,me
thod=_RETURNVERBOSE)

[Out]

exp(-1/4*(I*Pi+ln(2)+x)/x^3/(x+1)^2)

________________________________________________________________________________________

maxima [B]  time = 1.43, size = 114, normalized size = 4.38 \begin {gather*} e^{\left (\frac {i \, \pi }{4 \, {\left (x^{2} + 2 \, x + 1\right )}} + \frac {3 i \, \pi }{4 \, {\left (x + 1\right )}} - \frac {3 i \, \pi }{4 \, x} + \frac {\log \relax (2)}{4 \, {\left (x^{2} + 2 \, x + 1\right )}} + \frac {3 \, \log \relax (2)}{4 \, {\left (x + 1\right )}} - \frac {3 \, \log \relax (2)}{4 \, x} - \frac {1}{4 \, {\left (x^{2} + 2 \, x + 1\right )}} - \frac {1}{2 \, {\left (x + 1\right )}} + \frac {i \, \pi }{2 \, x^{2}} + \frac {1}{2 \, x} + \frac {\log \relax (2)}{2 \, x^{2}} - \frac {i \, \pi }{4 \, x^{3}} - \frac {1}{4 \, x^{2}} - \frac {\log \relax (2)}{4 \, x^{3}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*x+3)*(log(2)+I*pi)+4*x^2+2*x)*exp((-log(2)-I*pi-x)/(4*x^5+8*x^4+4*x^3))/(4*x^7+12*x^6+12*x^5+4*x
^4),x, algorithm="maxima")

[Out]

e^(1/4*I*pi/(x^2 + 2*x + 1) + 3/4*I*pi/(x + 1) - 3/4*I*pi/x + 1/4*log(2)/(x^2 + 2*x + 1) + 3/4*log(2)/(x + 1)
- 3/4*log(2)/x - 1/4/(x^2 + 2*x + 1) - 1/2/(x + 1) + 1/2*I*pi/x^2 + 1/2/x + 1/2*log(2)/x^2 - 1/4*I*pi/x^3 - 1/
4/x^2 - 1/4*log(2)/x^3)

________________________________________________________________________________________

mupad [B]  time = 1.14, size = 68, normalized size = 2.62 \begin {gather*} \frac {{\mathrm {e}}^{-\frac {\Pi \,1{}\mathrm {i}}{4\,x^5+8\,x^4+4\,x^3}}\,{\mathrm {e}}^{-\frac {x}{4\,x^5+8\,x^4+4\,x^3}}}{2^{\frac {1}{4\,x^5+8\,x^4+4\,x^3}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(-(Pi*1i + x + log(2))/(4*x^3 + 8*x^4 + 4*x^5))*(2*x + (5*x + 3)*(Pi*1i + log(2)) + 4*x^2))/(4*x^4 + 1
2*x^5 + 12*x^6 + 4*x^7),x)

[Out]

(exp(-(Pi*1i)/(4*x^3 + 8*x^4 + 4*x^5))*exp(-x/(4*x^3 + 8*x^4 + 4*x^5)))/2^(1/(4*x^3 + 8*x^4 + 4*x^5))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*x+3)*(ln(2)+I*pi)+4*x**2+2*x)*exp((-ln(2)-I*pi-x)/(4*x**5+8*x**4+4*x**3))/(4*x**7+12*x**6+12*x**
5+4*x**4),x)

[Out]

Timed out

________________________________________________________________________________________