Optimal. Leaf size=26 \[ e^{\frac {i \pi -x-\log (2)}{(-2-2 x)^2 x^3}} \]
________________________________________________________________________________________
Rubi [A] time = 1.68, antiderivative size = 36, normalized size of antiderivative = 1.38, number of steps used = 3, number of rules used = 3, integrand size = 81, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.037, Rules used = {6741, 12, 6706} \begin {gather*} 2^{-\frac {1}{4 x^3 (x+1)^2}} e^{-\frac {x+i \pi }{4 x^3 (x+1)^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {-i \pi -x-\log (2)}{4 x^3 (1+x)^2}} \left (3 i \pi +4 x^2+\log (8)+x (2+5 i \pi +\log (32))\right )}{4 x^4 (1+x)^3} \, dx\\ &=\frac {1}{4} \int \frac {e^{\frac {-i \pi -x-\log (2)}{4 x^3 (1+x)^2}} \left (3 i \pi +4 x^2+\log (8)+x (2+5 i \pi +\log (32))\right )}{x^4 (1+x)^3} \, dx\\ &=2^{-\frac {1}{4 x^3 (1+x)^2}} e^{-\frac {i \pi +x}{4 x^3 (1+x)^2}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 6.35, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {-i \pi -x-\log (2)}{4 x^3+8 x^4+4 x^5}} \left (2 x+4 x^2+(3+5 x) (i \pi +\log (2))\right )}{4 x^4+12 x^5+12 x^6+4 x^7} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 54, normalized size = 2.08 \begin {gather*} e^{\left (-\frac {i \, \pi }{4 \, {\left (x^{5} + 2 \, x^{4} + x^{3}\right )}} - \frac {x}{4 \, {\left (x^{5} + 2 \, x^{4} + x^{3}\right )}} - \frac {\log \relax (2)}{4 \, {\left (x^{5} + 2 \, x^{4} + x^{3}\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.39, size = 54, normalized size = 2.08 \begin {gather*} e^{\left (-\frac {i \, \pi }{4 \, {\left (x^{5} + 2 \, x^{4} + x^{3}\right )}} - \frac {x}{4 \, {\left (x^{5} + 2 \, x^{4} + x^{3}\right )}} - \frac {\log \relax (2)}{4 \, {\left (x^{5} + 2 \, x^{4} + x^{3}\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.28, size = 20, normalized size = 0.77
method | result | size |
risch | \({\mathrm e}^{-\frac {i \pi +\ln \relax (2)+x}{4 x^{3} \left (x +1\right )^{2}}}\) | \(20\) |
norman | \(\frac {x^{3} {\mathrm e}^{\frac {-\ln \relax (2)-i \pi -x}{4 x^{5}+8 x^{4}+4 x^{3}}}+x^{5} {\mathrm e}^{\frac {-\ln \relax (2)-i \pi -x}{4 x^{5}+8 x^{4}+4 x^{3}}}+2 x^{4} {\mathrm e}^{\frac {-\ln \relax (2)-i \pi -x}{4 x^{5}+8 x^{4}+4 x^{3}}}}{x^{3} \left (x +1\right )^{2}}\) | \(120\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.43, size = 114, normalized size = 4.38 \begin {gather*} e^{\left (\frac {i \, \pi }{4 \, {\left (x^{2} + 2 \, x + 1\right )}} + \frac {3 i \, \pi }{4 \, {\left (x + 1\right )}} - \frac {3 i \, \pi }{4 \, x} + \frac {\log \relax (2)}{4 \, {\left (x^{2} + 2 \, x + 1\right )}} + \frac {3 \, \log \relax (2)}{4 \, {\left (x + 1\right )}} - \frac {3 \, \log \relax (2)}{4 \, x} - \frac {1}{4 \, {\left (x^{2} + 2 \, x + 1\right )}} - \frac {1}{2 \, {\left (x + 1\right )}} + \frac {i \, \pi }{2 \, x^{2}} + \frac {1}{2 \, x} + \frac {\log \relax (2)}{2 \, x^{2}} - \frac {i \, \pi }{4 \, x^{3}} - \frac {1}{4 \, x^{2}} - \frac {\log \relax (2)}{4 \, x^{3}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.14, size = 68, normalized size = 2.62 \begin {gather*} \frac {{\mathrm {e}}^{-\frac {\Pi \,1{}\mathrm {i}}{4\,x^5+8\,x^4+4\,x^3}}\,{\mathrm {e}}^{-\frac {x}{4\,x^5+8\,x^4+4\,x^3}}}{2^{\frac {1}{4\,x^5+8\,x^4+4\,x^3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________