3.69.23 \(\int e^{4+8 x+4 x^2} (-24-24 x) \, dx\)

Optimal. Leaf size=22 \[ 3 \left (-e^{(2+2 x)^2}+\frac {1}{4 \log ^2(2)}\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 14, normalized size of antiderivative = 0.64, number of steps used = 1, number of rules used = 1, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {2236} \begin {gather*} -3 e^{4 x^2+8 x+4} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^(4 + 8*x + 4*x^2)*(-24 - 24*x),x]

[Out]

-3*E^(4 + 8*x + 4*x^2)

Rule 2236

Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[(e*F^(a + b*x + c*x^2))/(
2*c*Log[F]), x] /; FreeQ[{F, a, b, c, d, e}, x] && EqQ[b*e - 2*c*d, 0]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=-3 e^{4+8 x+4 x^2}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 11, normalized size = 0.50 \begin {gather*} -3 e^{4 (1+x)^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[E^(4 + 8*x + 4*x^2)*(-24 - 24*x),x]

[Out]

-3*E^(4*(1 + x)^2)

________________________________________________________________________________________

fricas [A]  time = 0.68, size = 13, normalized size = 0.59 \begin {gather*} -3 \, e^{\left (4 \, x^{2} + 8 \, x + 4\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-24*x-24)*exp(4*x^2+8*x+4),x, algorithm="fricas")

[Out]

-3*e^(4*x^2 + 8*x + 4)

________________________________________________________________________________________

giac [A]  time = 0.12, size = 13, normalized size = 0.59 \begin {gather*} -3 \, e^{\left (4 \, x^{2} + 8 \, x + 4\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-24*x-24)*exp(4*x^2+8*x+4),x, algorithm="giac")

[Out]

-3*e^(4*x^2 + 8*x + 4)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 11, normalized size = 0.50




method result size



risch \(-3 \,{\mathrm e}^{4 \left (x +1\right )^{2}}\) \(11\)
gosper \(-3 \,{\mathrm e}^{4 x^{2}+8 x +4}\) \(14\)
default \(-3 \,{\mathrm e}^{4 x^{2}+8 x +4}\) \(14\)
norman \(-3 \,{\mathrm e}^{4 x^{2}+8 x +4}\) \(14\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-24*x-24)*exp(4*x^2+8*x+4),x,method=_RETURNVERBOSE)

[Out]

-3*exp(4*(x+1)^2)

________________________________________________________________________________________

maxima [A]  time = 0.37, size = 13, normalized size = 0.59 \begin {gather*} -3 \, e^{\left (4 \, x^{2} + 8 \, x + 4\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-24*x-24)*exp(4*x^2+8*x+4),x, algorithm="maxima")

[Out]

-3*e^(4*x^2 + 8*x + 4)

________________________________________________________________________________________

mupad [B]  time = 0.05, size = 14, normalized size = 0.64 \begin {gather*} -3\,{\mathrm {e}}^{8\,x}\,{\mathrm {e}}^4\,{\mathrm {e}}^{4\,x^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-exp(8*x + 4*x^2 + 4)*(24*x + 24),x)

[Out]

-3*exp(8*x)*exp(4)*exp(4*x^2)

________________________________________________________________________________________

sympy [A]  time = 0.11, size = 14, normalized size = 0.64 \begin {gather*} - 3 e^{4 x^{2} + 8 x + 4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-24*x-24)*exp(4*x**2+8*x+4),x)

[Out]

-3*exp(4*x**2 + 8*x + 4)

________________________________________________________________________________________