Optimal. Leaf size=28 \[ -1+x \left (2+e^{x+\frac {\log ^2\left (\left (-2+e^x-x\right ) x\right )}{x}}+x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 27, normalized size = 0.96 \begin {gather*} x \left (2+e^{x+\frac {\log ^2\left (-x \left (2-e^x+x\right )\right )}{x}}+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 34, normalized size = 1.21 \begin {gather*} x^{2} + x e^{\left (\frac {x^{2} + \log \left (-x^{2} + x e^{x} - 2 \, x\right )^{2}}{x}\right )} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, x^{3} + 6 \, x^{2} - 2 \, {\left (x^{2} + x\right )} e^{x} + {\left (x^{3} - {\left (x - e^{x} + 2\right )} \log \left (-x^{2} + x e^{x} - 2 \, x\right )^{2} + 3 \, x^{2} - {\left (x^{2} + x\right )} e^{x} - 2 \, {\left ({\left (x + 1\right )} e^{x} - 2 \, x - 2\right )} \log \left (-x^{2} + x e^{x} - 2 \, x\right ) + 2 \, x\right )} e^{\left (\frac {x^{2} + \log \left (-x^{2} + x e^{x} - 2 \, x\right )^{2}}{x}\right )} + 4 \, x}{x^{2} - x e^{x} + 2 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.34, size = 812, normalized size = 29.00
method | result | size |
risch | \(x^{2}+x \,x^{\frac {2 i \pi }{x}} \left (x -{\mathrm e}^{x}+2\right )^{\frac {2 i \pi }{x}} x^{\frac {i \pi \,\mathrm {csgn}\left (i x \right )}{x}} \left (x -{\mathrm e}^{x}+2\right )^{\frac {i \pi \,\mathrm {csgn}\left (i x \right )}{x}} x^{-\frac {i \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}-2-x \right )\right )}{x}} \left (x -{\mathrm e}^{x}+2\right )^{-\frac {i \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}-2-x \right )\right )}{x}} \left (x -{\mathrm e}^{x}+2\right )^{\frac {2 \ln \relax (x )}{x}} x^{-\frac {i \pi \,\mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-2-x \right )\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-2-x \right )\right )}{x}} \left (x -{\mathrm e}^{x}+2\right )^{-\frac {i \pi \,\mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-2-x \right )\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-2-x \right )\right )}{x}} x^{-\frac {i \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-2-x \right )\right ) \pi }{x}} \left (x -{\mathrm e}^{x}+2\right )^{-\frac {i \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-2-x \right )\right ) \pi }{x}} x^{-\frac {2 i \pi }{x}} \left (x -{\mathrm e}^{x}+2\right )^{-\frac {2 i \pi }{x}} {\mathrm e}^{\frac {-\pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-2-x \right )\right )^{4} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-2-x \right )\right )^{2}-2 \pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-2-x \right )\right )^{3} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-2-x \right )\right )^{2} \mathrm {csgn}\left (i x \right )-\pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-2-x \right )\right )^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-2-x \right )\right )^{2}-2 \pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-2-x \right )\right )^{5} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-2-x \right )\right )+2 \pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-2-x \right )\right )^{3} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-2-x \right )\right )-\pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-2-x \right )\right )^{6}+2 \pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-2-x \right )\right )^{5} \mathrm {csgn}\left (i x \right )-\pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-2-x \right )\right )^{4} \mathrm {csgn}\left (i x \right )^{2}-4 \pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-2-x \right )\right )^{4} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-2-x \right )\right )-4 \pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-2-x \right )\right )^{3} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-2-x \right )\right )-4 \pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-2-x \right )\right )^{5}+4 \pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-2-x \right )\right )^{4} \mathrm {csgn}\left (i x \right )-4 \pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-2-x \right )\right )^{4}+4 \pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-2-x \right )\right )^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-2-x \right )\right )+4 \pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-2-x \right )\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-2-x \right )\right )+4 \pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-2-x \right )\right )^{3}-4 \pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-2-x \right )\right )^{2} \mathrm {csgn}\left (i x \right )+8 \pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-2-x \right )\right )^{2}-4 \pi ^{2}+4 \ln \relax (x )^{2}+4 \ln \left (x -{\mathrm e}^{x}+2\right )^{2}+4 x^{2}}{4 x}}+2 x\) | \(812\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 49, normalized size = 1.75 \begin {gather*} x^{2} + x e^{\left (x + \frac {\log \relax (x)^{2}}{x} + \frac {2 \, \log \relax (x) \log \left (-x + e^{x} - 2\right )}{x} + \frac {\log \left (-x + e^{x} - 2\right )^{2}}{x}\right )} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.30, size = 32, normalized size = 1.14 \begin {gather*} 2\,x+x^2+x\,{\mathrm {e}}^{\frac {{\ln \left (x\,{\mathrm {e}}^x-2\,x-x^2\right )}^2}{x}}\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________